### A central WENO-TVD scheme for hyperbolic conservation laws.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both...

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006A MATHEMATICA package for finding Lie symmetries of partial differential equations is presented. The package is designed to create and solve the associated determining system of equations, the full set of solutions of which generates the widest permissible local Lie group of point symmetry transformations. Examples illustrating the functionality of the package's tools...

We prove the existence of cylindrical solutions to the semilinear elliptic problem $-\Delta u+\frac{u}{{\left|y\right|}^{2}}=f\left(u\right)$, $u\in {H}^{1}\left({\mathbb{R}}^{N}\right)$, $u\ge 0$, where $(y,z)\in {\mathbb{R}}^{k}\times {\mathbb{R}}^{N-k}$, $N>k\ge 2$ and $f$ has a double-power behaviour, subcritical at infinity and supercritical near the origin. This result also implies the existence of solitary waves with nonvanishing angular momentum for nonlinear Schr¨odinger and Klein–Gordon equations.

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

The effective dynamics of interacting waves for coupled Schrödinger-Korteweg-de Vries equations over a slowly varying random bottom is rigorously studied. One motivation for studying such a system is better understanding the unidirectional motion of interacting surface and internal waves for a fluid system that is formed of two immiscible layers. It was shown recently by Craig-Guyenne-Sulem [1] that in the regime where the internal wave has a large...