Ondes progressives pour l’équation de Gross-Pitaevskii

Fabrice Béthuel[1]; Philippe Gravejat[2]; Jean-Claude Saut[3]

  • [1] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France
  • [2] Centre de Recherche en Mathématiques de la Décision, Université Paris Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France
  • [3] Laboratoire de Mathématiques, Université Paris Sud, Bâtiment 425, 91405 Orsay Cedex, France

Séminaire Équations aux dérivées partielles (2007-2008)

  • Volume: 2007-2008, page 1-28

Abstract

top
Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.

How to cite

top

Béthuel, Fabrice, Gravejat, Philippe, and Saut, Jean-Claude. "Ondes progressives pour l’équation de Gross-Pitaevskii." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-28. <http://eudml.org/doc/11171>.

@article{Béthuel2007-2008,
abstract = {Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.},
affiliation = {Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France; Centre de Recherche en Mathématiques de la Décision, Université Paris Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France; Laboratoire de Mathématiques, Université Paris Sud, Bâtiment 425, 91405 Orsay Cedex, France},
author = {Béthuel, Fabrice, Gravejat, Philippe, Saut, Jean-Claude},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Gross-Pitaevski equation; travelling waves},
language = {fre},
pages = {1-28},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Ondes progressives pour l’équation de Gross-Pitaevskii},
url = {http://eudml.org/doc/11171},
volume = {2007-2008},
year = {2007-2008},
}

TY - JOUR
AU - Béthuel, Fabrice
AU - Gravejat, Philippe
AU - Saut, Jean-Claude
TI - Ondes progressives pour l’équation de Gross-Pitaevskii
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 28
AB - Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.
LA - fre
KW - Gross-Pitaevski equation; travelling waves
UR - http://eudml.org/doc/11171
ER -

References

top
  1. F. Béthuel, P. Gravejat, and J.-C. Saut. Existence and properties of travelling waves for the Gross-Pitaevskii equation. Preprint. Zbl1190.35196
  2. F. Béthuel, P. Gravejat, and J.-C. Saut. On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves. Preprint. Zbl1186.35199
  3. F. Béthuel, P. Gravejat, and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation II. Preprint. Zbl1190.35196
  4. F. Béthuel, G. Orlandi, and D. Smets. Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc., 6(1) :17–94, 2004. Zbl1091.35085MR2041006
  5. F. Béthuel and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation I. Ann. Inst. Henri Poincaré, Physique Théorique, 70(2) :147–238, 1999. Zbl0933.35177MR1669387
  6. F. Béthuel and D. Smets. A remark on the Cauchy problem for the 2D Gross-Pitaevskii equation with non zero degree at infinity. Differential Integral Equations, 20(3) :325–338, 2007. Zbl1212.35376MR2293989
  7. D. Chiron. Travelling waves for the Gross-Pitaevskii equation in dimension larger than two. Nonlinear Anal., 58(1-2) :175–204, 2004. Zbl1054.35091MR2070812
  8. D. Chiron. Boundary problems for the Ginzburg-Landau equation. Commun. Contemp. Math., 7(5) :597–648, 2005. Zbl1124.35081MR2175092
  9. D. Chiron. Vortex helices for the Gross-Pitaevskii equation. J. Math. Pures Appl., 84(11) :1555–1647, 2005. Zbl1159.35425MR2181460
  10. C. Coste. Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B, 1 :245–253, 1998. MR1646182
  11. A. de Bouard and J.-C. Saut. Remarks on the stability of generalized KP solitary waves. In Mathematical problems in the theory of water waves (Luminy, 1995), volume 200 of Contemp. Math., pages 75–84. Amer. Math. Soc., Providence, RI, 1996. Zbl0863.35095MR1410501
  12. A. de Bouard and J.-C. Saut. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 14(2) :211–236, 1997. Zbl0883.35103MR1441393
  13. A. de Bouard and J.-C. Saut. Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal., 28(5) :1064–1085, 1997. Zbl0889.35090MR1466669
  14. A. Farina. From Ginzburg-Landau to Gross-Pitaevskii. Monatsh. Math., 139 :265–269, 2003. Zbl1126.35063MR2001707
  15. C. Gallo. The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. Preprint. Zbl1156.35086
  16. C. Gallo. The dark solitons of the one-dimensional nonlinear Schrödinger equation. Preprint. 
  17. P. Gérard. The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 23(5) :765–779, 2006. Zbl1122.35133MR2259616
  18. P. Gérard. The Gross-Pitaevskii equation in the energy space. Preprint. Zbl1166.35373
  19. V.L. Ginzburg and L.P. Pitaevskii. On the theory of superfluidity. Sov. Phys. JETP, 34 :1240, 1958. MR105929
  20. O. Goubet. Two remarks on solutions of Gross-Pitaevskii equations on Zhidkov spaces. Monatsh. Math., 151(1) :39–44, 2007. Zbl1128.35096MR2317389
  21. P. Gravejat. Limit at infinity for travelling waves in the Gross-Pitaevskii equation. C. R. Math. Acad. Sci. Paris, 336(2) :147–152, 2003. Zbl1145.35458MR1969569
  22. P. Gravejat. A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation. Commun. Math. Phys., 243(1) :93–103, 2003. Zbl1044.35087MR2020221
  23. P. Gravejat. Decay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 21(5) :591–637, 2004. Zbl1057.35060MR2086751
  24. P. Gravejat. Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation. Differential Integral Equations, 17(11-12) :1213–1232, 2004. Zbl1150.35301MR2100023
  25. P. Gravejat. Asymptotics for the travelling waves in the Gross-Pitaevskii equation. Asymptot. Anal., 45(3-4) :227–299, 2005. Zbl1092.35103MR2191764
  26. P. Gravejat. First order asymptotics for the travelling waves in the Gross-Pitaevskii equation. Adv. Differential Equations, 11(3) :259–280, 2006. Zbl1102.35029MR2221483
  27. E.P. Gross. Hydrodynamics of a superfluid condensate. J. Math. Phys., 4(2) :195–207, 1963. 
  28. S. Gustafson, K. Nakanishi, and T.-P. Tsai. Scattering for the Gross-Pitaevskii equation. Math. Res. Lett., 13(2) :273–285, 2006. Zbl1119.35084MR2231117
  29. S. Gustafson, K. Nakanishi, and T.-P. Tsai. Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré, 8(7) :1303–1331, 2007. Zbl05218113MR2360438
  30. S.V. Iordanskii and A.V. Smirnov. Three-dimensional solitons in He II. JETP Lett., 27(10) :535–538, 1978. 
  31. C.A. Jones, S.J. Putterman, and P.H. Roberts. Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions. J. Phys. A, Math. Gen., 19 :2991–3011, 1986. 
  32. C.A. Jones and P.H. Roberts. Motions in a Bose condensate IV. Axisymmetric solitary waves. J. Phys. A, Math. Gen., 15 :2599–2619, 1982. 
  33. B.B. Kadomtsev and V.I. Petviashvili. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl., 15(6) :539–541, 1970. Zbl0217.25004
  34. Y.S. Kivshar and B. Luther-Davies. Dark optical solitons : physics and applications. Phys. Rep., 298 :81–197, 1998. 
  35. Zhiwu Lin. Stability and instability of traveling solitonic bubbles. Adv. Differential Equations, 7(8) :897–918, 2002. Zbl1033.35117MR1895111
  36. O. Lopes. A constrained minimization problem with integrals on the entire space. Bol. Soc. Bras. Mat., 25(1) :77–92, 1994. Zbl0805.49005MR1274763
  37. E. Madelung. Quantumtheorie in Hydrodynamische form. Zts. f. Phys., 40 :322–326, 1926. Zbl52.0969.06
  38. M. Maris. Stationary solutions to a nonlinear Schrödinger equation with potential in one dimension. Proc. Roy. Soc. Edinb. A, 133(2) :409–437, 2003. Zbl1038.35122MR1969820
  39. K. Nakanishi. Scattering theory for the Gross-Pitaevskii equation. Preprint. Zbl1171.35475
  40. L.P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2) :451–454, 1961. 
  41. É. Tarquini. A lower bound on the energy of travelling waves of fixed speed for the Gross-Pitaevskii equation. Monatsh. Math., 151(4) :333–339, 2007. Zbl1127.35063MR2329092
  42. T. Tsuzuki. Nonlinear waves in the Pitaevskii-Gross equation. J. Low Temp. Phys., 4(4) :441–457, 1971. 
  43. P.E. Zhidkov. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, volume 1756 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001. Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.