Propagation of analytic singularities for the Schrödinger Equation
André Martinez[1]; Shu Nakamura[2]; Vania Sordoni[1]
- [1] Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna, Italy
- [2] Graduate School of Mathematical Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan 153-8914
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-14
Access Full Article
topHow to cite
topMartinez, André, Nakamura, Shu, and Sordoni, Vania. "Propagation of analytic singularities for the Schrödinger Equation." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-14. <http://eudml.org/doc/11174>.
@article{Martinez2007-2008,
affiliation = {Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna, Italy; Graduate School of Mathematical Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan 153-8914; Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna, Italy},
author = {Martinez, André, Nakamura, Shu, Sordoni, Vania},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {infinite speed of propagation; short-range type perturbations},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Propagation of analytic singularities for the Schrödinger Equation},
url = {http://eudml.org/doc/11174},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Martinez, André
AU - Nakamura, Shu
AU - Sordoni, Vania
TI - Propagation of analytic singularities for the Schrödinger Equation
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 14
LA - eng
KW - infinite speed of propagation; short-range type perturbations
UR - http://eudml.org/doc/11174
ER -
References
top- Bouclet, J.M., Tzvetkov, N., Strichartz estimates for long range perturbations, Amer. J. Math. vol 129, no. 6 (2007) Zbl1154.35077MR2369889
- Burq, N., Gérard, P., Tzvetkov, N. Strichartz inequalities and the non-linear Schrödinger equation on compact manifolds, Am. J. Math. 126 (2004), 569–605. Zbl1067.58027MR2058384
- Craig, W., Kappeler, T., Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pures Appl. Math. 48 (1996), 769–860. Zbl0856.35106MR1361016
- Doi, S., Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000), 355–389. Zbl0969.35029MR1795567
- Doi, S., Singularities of solutions of Schrödinger equations for perturbed harmonic oscillators, Hyperbolic problems and related topics, Grad. Ser. Anal. 185–199, Int. Press, Somerville, MA, 2003. Zbl1047.35007MR2056850
- Ginibre, J., Velo, G., Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 144 (1992), 163–188. Zbl0762.35008MR1151250
- Hassel, A., Wunsch, J., The Schrödinger propagator for scattering metrics, Annals of Mathematics, 162 (2005) Zbl1126.58016MR2178967
- Hayashi, N., Kato, K., Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. H. Poincaré, Phys. Théo. 52 (1990), 163–173. Zbl0731.35047MR1051235
- Hayashi, N., Kato, K., Analyticity in time and Smoothing effect of solutions to nonlinear Schrödinger equations, Comm. Math. Phys. 184 (1997), 273–300. Zbl0871.35087MR1462747
- Ito, K.: Propagation of Singularities for Schrödinger Equations on the Euclidean Space with a Scattering Metric, Comm. P. D. E., 31 (12), 1735–1777 (2006). Zbl1117.35005MR2273972
- Kajitani, K., Wakabayashi, S., Analytic smoothing effect for Schrödinger type equations with variable coefficients, in: Direct and Inverse Problems of Mathematical Physics (Newark, DE 1997), Int. Soc. Anal. Comput. 5, Kluwer Acad. Publ. (Dordracht, 2000), 185–219. Zbl1043.35055MR1766299
- Kapitanski, L., Rodnianski, I., Yajima, K., On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal. 9 (1997), 77–106. Zbl0892.35035MR1483643
- Kapitanski, L., Safarov, Y., Dispersive smoothing for Schrödinger equations, Math. Res. Letters 3 (1996), 77–91. Zbl0860.35016MR1393385
- Kato, K., Taniguchi, K., Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math 33 (1996), 863–880. Zbl0876.35109MR1435458
- Kato, T., Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481–496. Zbl0833.47005MR1061120
- Kenig, C., Ponce, G., Vega, L., Oscillatory integrals and regularity of dispersive equations, Ind. Univ. Math. J. 40 (1991), 33–69. Zbl0738.35022MR1101221
- Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, UTX Series, Springer-Verlag New-York, 2002. Zbl0994.35003MR1872698
- Martinez, A., Nakamura, S., Sordoni, V., Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math. 59 (2006), 1330–1351. Zbl1122.35027MR2237289
- Martinez, A., Nakamura, S., Sordoni, V., Analytic wave front set for solutions to Schrödinger equations, Preprint 2007. Zbl1180.35016
- Mechergui, C., Equivalence between the analytic quadratic scattering wave front set and analytic homogeneus wave front set, Preprint 2007.
- Melrose, R. B., Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992), Dekker, New York, 1994, pp. 85TH130. Zbl0837.35107MR1291640
- Morimoto, Y., Robbiano, L., Zuily, C., Remark on the smoothing for the Schrödinger equation, Indiana University Mathematic Journal 49 (2000), 1563–1579. Zbl0987.35009MR1838302
- Nakamura, S., Propagation of the Homogeneous Wave Front Set for Schrödinger Equations, Duke Math. J. 126, 349-367 (2005). Zbl1130.35023MR2115261
- Nakamura, S., Wave front set for solutions to Schrödinger equations, Preprint 2004
- Nakamura, S.: Semiclassical singularity propagation property for Schrödinger equations, Preprint 2006 (http://www.arxiv.org/abs/math.AP/0605742), to appear in J. Math. Soc. Japan.
- Robert, S., Autour de l’Approximation Semi-Classique, Birkhäuser (1987) Zbl0621.35001
- Robbiano, L., Zuily, C., Microlocal analytic smoothing effect for Schrödinger equation, Duke Math. J. 100 (1999), 93–129. Zbl0941.35014MR1714756
- Robbiano, L., Zuily, C., Effet régularisant microlocal analytique pour l’équation de Schrödinger: le cas des données oscillantes, Comm. Partial Differential Equations 100 (2000) 1891–1906. Zbl0959.35007
- Robbiano, L., Zuily, C., Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation, Soc. Math. France, Astérisque 283 (2002), 1–128. Zbl1029.35001MR1958605
- Robbiano, L., Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mem. Soc. Math. France (N.S.) 101-102 (2005) Zbl1097.35002MR2193021
- Sjöstrand, J., Singularités analytiques microlocales, Soc. Math. France, Astérisque 95 (1982), 1–166. Zbl0524.35007MR699623
- Staffilani, G., Tataru, D., Strichartz estimates for a Schrödinger operator with non smooth coefficients, Com. P. D. E. 27 (2002), 1337–1372 Zbl1010.35015MR1924470
- Wunsch, J., Propagation of singularities and growth for Schrödinger operators, Duke Math. J. 98 (1999), 137-186. Zbl0953.35121MR1687567
- Yajima, K., On smoothing property of Schrödinger propagators. Functional-Analytic Methods for Partial Differential Equations, Lecture Notes in Math., 1450 (1990), 20–35, Springer, Berlin. Zbl0725.35084MR1084599
- Yajima, K., Schrödinger evolution equations and associated smoothing effect, Rigorous Results in Quantum Dynamics, World Sci. Publishing, River Edge, NJ, 1991, 167–185. MR1243040
- Yamazaki, M., On the microlocal smoothing effect of dispersive partial differential equations, Algebraic Analysis Vol. II, 911–926, Academic Press, Boston, MA,1988. Zbl0683.35010MR992503
- Zelditch, S., Reconstruction of singularities for solutions of Schrödinger equation, Comm. Math. Phys. 90 (1983), 1–26. Zbl0554.35031MR714610
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.