Problèmes aux limites et solutions discontinues pour les systèmes hyperboliques quasi linéaires d'ordre 1

Li Ta-Tsien

Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980)

  • page 1-21

How to cite

top

Ta-Tsien, Li. "Problèmes aux limites et solutions discontinues pour les systèmes hyperboliques quasi linéaires d'ordre 1." Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980): 1-21. <http://eudml.org/doc/111758>.

@article{Ta1979-1980,
author = {Ta-Tsien, Li},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {discontinuous initial condition; Cauchy problem; boundary value problem; first order hyperbolic system; quasilinear problem; regularity},
language = {fre},
pages = {1-21},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Problèmes aux limites et solutions discontinues pour les systèmes hyperboliques quasi linéaires d'ordre 1},
url = {http://eudml.org/doc/111758},
year = {1979-1980},
}

TY - JOUR
AU - Ta-Tsien, Li
TI - Problèmes aux limites et solutions discontinues pour les systèmes hyperboliques quasi linéaires d'ordre 1
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 21
LA - fre
KW - discontinuous initial condition; Cauchy problem; boundary value problem; first order hyperbolic system; quasilinear problem; regularity
UR - http://eudml.org/doc/111758
ER -

References

top
  1. [1] J. Schauder: Cauchy'sches problem für partielle differentialgleichungen erste Ordnung, Commentarii Math., Helvetici, 9, 1937, p.263-283. JFM63.0441.01
  2. [2] K.O. Friedrichs: Nonlinear hyperbolic differential equations of two independent variables, Amer. Jour. of Math., 70, 1948, p.555-589. Zbl0039.10601MR25659
  3. [3] R. Courant, P.D. Lax: On nonlinear differential equations with two independent variables. Comm. Pure Appl. Math., 2, 1949, p.255-273. Zbl0034.20103MR33443
  4. [4] A. Douglis: Some existence theorems for hyperbolic systems of partial differential equations in two independent variables. Comm. Pure Appl. Math.,2, 1952, p.119-154. Zbl0047.09101MR52666
  5. [5] P. Hartman, A. Wintner: On hyperbolic partial differential equations, Amer. Jour . of Math., 74, 1952, p.834-864. Zbl0048.33302MR51413
  6. [6] R. Courant, E. Isaacson, M. Rees: On the solution of nonlinear hyperbolic differential equations by finite difference, Comm. Pure Appl. Math., 5, 1952, p.243-255. Zbl0047.11704MR53336
  7. [7] P.D. Lax: Nonlinear hyperbolic equations, Comm. Pure Appl. Math., 6, 1953, p.231-258. Zbl0050.31705MR56176
  8. [8] P.D. Lax: The initial value problem for nonlinear hyperbolic equations in two independent variables. Ann. Math. Studies, Princeton University Press, 33, 1954, p.211-229. Zbl0057.32502MR68093
  9. [9] R. Courant, P.D. Lax: Cauchy's problem for nonlinear hyperbolic equations in two independent variables. Annali di Matematica pura ed Applicata, 40, 1955, p.161-166. Zbl0065.32901MR76161
  10. [10] R. Courant: Cauchy's problem for hyperbolic quasi-linear systems of first order partial differential equations in two independent variables. Comm. Pure Appl. Math., 14, 1961, p.257-265. Zbl0102.31202MR131670
  11. [11] Li Ta- tsien, Yu Wen-tzu: Cauchy's problem for quasi-linear hyperbolic systems of first order partial differential equations. Math. Progress, 7, 1964, p.152-171. MR232091
  12. [12] P.D. Lax: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys., 5, 1964, p.611-613. Zbl0135.15101MR165243
  13. [13] J.B. Keller, L. Ting: Periodic vibrations of systems governed by nonlinear partial differential equations", Comm. Pure Appl. Math., 19, 1966, p.371-420. Zbl0284.35004MR205520
  14. [14] T. Nishida: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathématiquesd'Orsay, 1978, 02. Zbl0392.76065MR481578
  15. [15] A. Jeffrey: Quasilinear hyperbolic systems and waves. Research Notes in Mathematics, Pitman Publishing, 1976. Zbl0322.35060MR417585
  16. [16] F. John: Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math., 27, 1974, p.377-465. Zbl0302.35064MR369934
  17. [17] R. Courant, K.O. Friedrichs: Supersonic flow and shock waves. New York, 1948. Zbl0041.11302MR29615
  18. [18] P. Giovanni: Sulla risonluzione del problema misto per le equazioni iperboliche non lineari mediante le differenze finite. Ann. Mat. Pura. Appl., 46, 1958, p.313-341. Zbl0090.07302MR123851
  19. [19] V. Thomée: Difference methods for two dimensional mixed problems for hyperbolic first order systems. Arch. Rat. Mech. Anal., 8, 1961, p.68-88. Zbl0104.32202MR129555
  20. [20] V. Thomée: A mixed boundary-value problem for hyperbolic first-order systems with derivatives in the boundary conditions. Arch. Rat. Mech.Anal., 8, 1961, p.433-443. Zbl0104.32203MR145212
  21. [21] B.L. Rozdestvenskii, N.N. Yanenko: Systems of quasilinear equations. Izd. NaukaMoskva, 1968. 
  22. [22] Li Ta-tsien, Yu Wen-tzu: Some existence theorems for quasi-linear hyperbolic systems of partial differential equations in two independent variables, (I) Typical boundary value problems, Scientia Sinica,13, n°4, 1964, p.529-549. Zbl0173.12305MR176229
  23. [23] Li Ta-tsien, Yu Wen-tzu: (II) Typical boundary value problems of functional form and typical free boundary problems, ibid.13, n°4, 1964, p.551-562. Zbl0173.12305MR176230
  24. [24] Li Ta-tsien, Yu Wen-tzu: (III) General boundary value problems and general free boundary problems, ibid, 14, n°7, 1965, p.1065-1067; Bulletin de Fudan, 10, n° 2-3, 1965, p.113-128. Zbl0173.12305MR183960
  25. [25] Gu Chao-hao, Li Ta-tsien et coll.: Ecoulements plans supersoniques autour d'une arête avec une frontière courbe. Recueil de la Faculté de Mathématiques de l'UniversitéFudan, 1960, p.17-28. 
  26. [26] Gu Chao-hao: Une méthode pour résoudre le problème de l'écoulement supersonique autour d'une arête avec une frontière courbe. Bulletin deFudan, 7, n°1, 1962, p.11-14. 
  27. [27] Gu Chao-hao: A boundary value problem for hyperbolic systems and its applications. Acta Math. Sinica, 13, 1963, p.32-48. Zbl0161.08301MR163069
  28. [28] D.G. Schaeffer: An application of the Nash-Moser theorem to a free boundary problem. Lecture Notes in Mathematics, 648, 1978, p.129-143. Zbl0393.35066MR499455
  29. [29] D.G. Schaeffer: Supersonic flow past a nearly straight wedge. Duke Math. J., 43, 1976, p.637-670. Zbl0356.76046MR413736
  30. [30] Li Ta-tsien: Une remarque sur un problème à frontière libre. C. R. Acad. Sc. Paris, t.289 (9 Juillet 1979), série A, p.99-102. Zbl0423.35086MR549078
  31. [31] Li Ta-tsien: On a free boundary problem. A paraître dans Chinese Annals of Math. 
  32. [32] Li Ta-tsien, Yu Wen-tzu: The local solvability of the boundary value problems for quasi linear hyperbolic systems of partial differential equations. Bulletin deFudan, 2, 1979, p.83-93. 
  33. [33] Gu Chao-hao, Li Ta-tsien et coll.: The Cauchy problem of typical hyperbolic system with discontinuous initial values. Recueil de la Faculté de Mathématiques de l'UniversitéFudan, 1960, p.1-16. 
  34. [34] Gu Chao-hao, Li Ta-tsien, Ho Zon-y: The Cauchy problem of quasi-linear hyperbolic systems with discontinuous initial values (1). Acta Math. Sinica, 11, 1961, p.314-323. Zbl0192.19303
  35. [35] Gu Chao-hao, Li Ta-tsien, Ho Zon-y: (II), ibid, 11, 1961, p.324-327. 
  36. [36] Gu Chao-hao, Li Ta-tsien, Ho Zon-y: (III), ibid, 12, 1962, p.132-143. 
  37. [37] Li Ta-tsien, Yu Wen-tzu: Discontinuous solutions for the quasi-linear hyperbolic systems. A paraître. 
  38. [38] P.D. Lax: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math., 10, 1957, p.537-566. Zbl0081.08803MR93653
  39. [39] J. Glimm: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18, 1965, p.697-715. Zbl0141.28902MR194770

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.