A boundary blow-up for sub-linear elliptic problems with a nonlinear gradient term.
This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They...
In this paper we certify that the same approach proposed in previous works by Chniti et al. [C. R. Acad. Sci. 342 (2006) 883–886; CALCOLO 45 (2008) 111–147; J. Sci. Comput. 38 (2009) 207–228] can be applied to more general operators with strong heterogeneity in the coefficients. We consider here the case of reaction-diffusion problems with piecewise constant coefficients. The problem reduces to determining the coefficients of some transmission conditions to obtain fast convergence of domain decomposition...
In this paper we certify that the same approach proposed in previous works by Chniti et al. [C. R. Acad. Sci.342 (2006) 883–886; CALCOLO45 (2008) 111–147; J. Sci. Comput.38 (2009) 207–228] can be applied to more general operators with strong heterogeneity in the coefficients. We consider here the case of reaction-diffusion problems with piecewise constant coefficients. The problem reduces to determining the coefficients of some transmission conditions to obtain fast convergence of domain decomposition...
We prove a maximum principle for linear second order elliptic systems in divergence form with discontinuous coefficients under a suitable condition on the dispersion of the eigenvalues of the coefficients matrix.
In this article we give a construction of the wave group for variable coefficient, time dependent wave equations, under the hypothesis that the coefficients of the principal term possess two bounded derivatives in the spatial variables, and one bounded derivative in the time variable. We use this construction to establish the Strichartz and Pecher estimates for solutions to the Cauchy problem for such equations, in space dimensions and .
Semilinear hyperbolic problems with source terms piecewise smooth and discontinuous across characteristic surfaces yield similarly piecewise smooth solutions. If the discontinuous source is replaced with a smooth transition layer, the discontinuity of the solution is replaced by a smooth internal layer. In this paper we describe how the layer structure of the solution can be computed from the layer structure of the source in the limit of thin layers. The key idea is to use a transmission problem...