Semi-groupes et problèmes aux limites

K. Taira

Séminaire Équations aux dérivées partielles (Polytechnique) (1980-1981)

  • page 1-17

How to cite

top

Taira, K.. "Semi-groupes et problèmes aux limites." Séminaire Équations aux dérivées partielles (Polytechnique) (1980-1981): 1-17. <http://eudml.org/doc/111777>.

@article{Taira1980-1981,
author = {Taira, K.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Ventcel boundary; Feller semigroups},
language = {fre},
pages = {1-17},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Semi-groupes et problèmes aux limites},
url = {http://eudml.org/doc/111777},
year = {1980-1981},
}

TY - JOUR
AU - Taira, K.
TI - Semi-groupes et problèmes aux limites
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1980-1981
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 17
LA - fre
KW - Ventcel boundary; Feller semigroups
UR - http://eudml.org/doc/111777
ER -

References

top
  1. [1] S. Agmon: Lectures on elliptic boùndary value problems, Van Nostrand, Princeton, 1965. Zbl0142.37401MR178246
  2. [2] J.M. Bony, P. Courrège et P. Priouret: Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégrodifférentiels du second ordre donnant lieu au principe maximum, Ann. Inst. Fourier (Grenoble) 18 (1968), 369-521. Zbl0181.11704MR245085
  3. [3] W.L. Chow: Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann.117 (1938), 98-105. Zbl65.0398.01MR1880JFM65.0398.01
  4. [4] E.B. Dynkin: Markov processes, vols. I, II, Springer-Verlag, Berlin, 1965. Zbl0132.37901MR193671
  5. [5] L. Hörmander: Linear partial differential operators, Springer-Verlag, Berlin, 1963. Zbl0108.09301MR404822
  6. [6] L. Hörmander: Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math.83 (1966), 129-209. Zbl0132.07402MR233064
  7. [7] L. Hörmander: A class of hypoelliptic pseudo-differential operators with double characteristics, Math. Ann.217 (1975), 165-188. Zbl0306.35032MR377603
  8. [8] O.A. Oleĭnik and E.V. Radkevič: Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New York, 1973. MR457908
  9. [9] K. Sato and T. Ueno: Multi-dimensional diffusion and Markov process on the boundary, J. Math. Kyoto Univ.4 (1965), 529-605. Zbl0219.60057MR198547
  10. [10] D.W. Stroock and S.R.S. Varadhan: On degenerate elliptic-parabolic operators of second order and their associated diffusion, Comm. Pure Appl. Math.24 (1972), 651-713. Zbl0344.35041MR387812
  11. [11] K. Taira: Sur l'existence de processus de diffusion, Ann. Inst. Fourier(Grenoble) 29 (1979), 99-126. Zbl0403.60071MR558591
  12. [12] K. Taira: Un théorème d'existence et d'unicicté des solutions pour des problèmes aux limites non-elliptiques, à paraître au Journal of Functional Analysis. Zbl0474.35045
  13. [13] T. Ueno: The diffusion satisfying Wentzell's boundary condition and the Markov process on the boundary II, Proc. Japan Acad.36 (1960), 625-629. Zbl0100.13802MR144381
  14. [14] A.D. Wentzell(Ventcel'): On boundary conditions for multidimensional diffusion processes, Theor. Prob. and Appl.4 (1959), 164-177. Zbl0089.13404MR121855
  15. [15] K. Yosida: Functional analysis, Springer-Verlag, Berlin, 1965. Zbl0126.11504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.