On the global well-posedness of the Boussinesq system with zero viscosity
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-15
Access Full Article
topAbstract
topHow to cite
topHmidi, Taoufik. "On the global well-posedness of the Boussinesq system with zero viscosity." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-15. <http://eudml.org/doc/11178>.
@article{Hmidi2007-2008,
abstract = {In this paper we prove the global well-posedness of the two-dimensional Boussinesq system with zero viscosity for rough initial data.},
author = {Hmidi, Taoufik},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Boussinesq system; global well-posedness},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the global well-posedness of the Boussinesq system with zero viscosity},
url = {http://eudml.org/doc/11178},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Hmidi, Taoufik
TI - On the global well-posedness of the Boussinesq system with zero viscosity
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 15
AB - In this paper we prove the global well-posedness of the two-dimensional Boussinesq system with zero viscosity for rough initial data.
LA - eng
KW - Boussinesq system; global well-posedness
UR - http://eudml.org/doc/11178
ER -
References
top- H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Equa.,233, 1 (2007) 199-220. Zbl1111.35032MR2290277
- J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l’ Ecole Norm. Sup., 14 (1981) 209-246. Zbl0495.35024
- J. T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for -D Euler equations, Comm. Math. Phys 94 (1984) 61-66. Zbl0573.76029MR763762
- J. R. Cannon, E. Dibenedetto, The initial value problem for the Boussinesq equations with data in in Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math. 771, Springer, Berlin 1980, 129-144. Zbl0429.35059MR565993
- D. Chae, Global regularity for the -D Boussinesq equations with partial viscous terms, Advances in Math., 203, 2 (2006) 497-513. Zbl1100.35084MR2227730
- J.-Y. Chemin, Perfect incompressible Fluids, Oxford University Press. Zbl0927.76002MR1688875
- J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999) 27-50. Zbl0938.35125
- R. Danchin, M. Paicu, Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux, to appear in Bull. S. M. F.
- B. Guo, Spectral method for solving two-dimensional Newoton-Boussinesq equation, Acta Math. Appl. Sinica, 5 (1989) 201-218. Zbl0681.76048MR1013438
- T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl. (9) 84, 11 (2005) 1455-1495. Zbl1095.35024MR2181457
- T. Hmidi, Poches de tourbillon singulières dans un fluide faiblement visqueux. Rev. Mat. Iberoamericana, 22, 2 (2006) 489-543. Zbl1127.35037MR2294788
- T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Diff. Equations, 12, 4 (2007) 461-480. Zbl1154.35073MR2305876
- T. Hmidi, S. Keraani, Incompressible viscous flows in borderline Besov spaces, to appear in Arch. Ratio. Mech. Ana. Zbl1147.76014
- T. Y. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete and Continuous Dynamical Systems, 1 (2005) 1-12. Zbl1274.76185MR2121245
- O. Sawada, Y. Taniuchi, On the Boussinesq flow with nondecaying initial data, Funkcial. Ekvac. 47, 2 (2004) 225-250. Zbl1118.35037MR2108674
- M. Vishik, Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal 145(1998) 197-214. Zbl0926.35123MR1664597
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.