Hypoellipticité maximale pour le système de Cauchy-Riemann induit

J. Nourrigat

Séminaire Équations aux dérivées partielles (Polytechnique) (1981-1982)

  • page 1-10

How to cite

top

Nourrigat, J.. "Hypoellipticité maximale pour le système de Cauchy-Riemann induit." Séminaire Équations aux dérivées partielles (Polytechnique) (1981-1982): 1-10. <http://eudml.org/doc/111819>.

@article{Nourrigat1981-1982,
author = {Nourrigat, J.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {induced Cauchy Riemann system; maximal hypoellipticity; vector fields},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Hypoellipticité maximale pour le système de Cauchy-Riemann induit},
url = {http://eudml.org/doc/111819},
year = {1981-1982},
}

TY - JOUR
AU - Nourrigat, J.
TI - Hypoellipticité maximale pour le système de Cauchy-Riemann induit
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1981-1982
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - induced Cauchy Riemann system; maximal hypoellipticity; vector fields
UR - http://eudml.org/doc/111819
ER -

References

top
  1. [1] Bolley-Camus-Helffer: Remarques sur l'hypoellipticité. C. R. Acad. Sc. t.283 (1976) p.979-982. Zbl0339.35029
  2. [2] Boutet de Monvel - Grigis - Helffer: Paramétrixes d'opérateurs pseudodifférentiels à caractéristiques multiples. Astérisque34-35 (1976). Zbl0344.32009
  3. [3] Egorov: Subelliptic operators. Russian Math. Survey30 (2) (1975) p.59-118 et 30 (3) (1975) p. 55-105. Zbl0331.35054MR410473
  4. [4] Folland-Kohn: The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies n° 75, Princeton, 1972. Zbl0247.35093
  5. [5] Grushin: On a class of hypoelliptic operators. Math. Sbornik.83 (125) (1970) p. 456-473. Zbl0211.40503MR279436
  6. [6] Hormander: Pseudodifferential operators and non elliptic boundary value problems. Ann. of Math.83 (1966) p.129-269. Zbl0132.07402
  7. [7] Kirillov: Unitary representations of nilpotent Lie groups. Russian Math. Survey17 (1962) p. 53-104. Zbl0106.25001MR142001
  8. [8] Rothschild: A criterion for hypoellipticity of operators constructed from vector fields. Comm. in P. D. E.4 (6) (1979) p. 546-699. Zbl0459.35025MR532580
  9. [9] Rothschild-Stein: Hypoelliptic differential operators and nilpotent groups. Acta Math.137 (1976) p. 247-320. Zbl0346.35030MR436223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.