A survey of some new results in ferromagnetic thin films
Radu Ignat[1]
- [1] Laboratoire de Mathématiques, Université Paris-Sud 11, Bât. 425, 91405 Orsay, France
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-19
Access Full Article
topHow to cite
topIgnat, Radu. "A survey of some new results in ferromagnetic thin films." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-19. <http://eudml.org/doc/11182>.
@article{Ignat2007-2008,
affiliation = {Laboratoire de Mathématiques, Université Paris-Sud 11, Bât. 425, 91405 Orsay, France},
author = {Ignat, Radu},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Ginzburg-Landau type problems; van den Berg conjecture; Bloch lines; Néel wall},
language = {eng},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {A survey of some new results in ferromagnetic thin films},
url = {http://eudml.org/doc/11182},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Ignat, Radu
TI - A survey of some new results in ferromagnetic thin films
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 19
LA - eng
KW - Ginzburg-Landau type problems; van den Berg conjecture; Bloch lines; Néel wall
UR - http://eudml.org/doc/11182
ER -
References
top- F. Alouges and S. Labbé, z-invariant micromagnetic configurations in cylindrical domains, preprint.
- F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations, ESAIM Control Optim. Calc. Var. 8 (2002), 31–68. Zbl1092.82047MR1932944
- L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. Zbl0960.49013MR1731470
- P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1–16. MR924423
- F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl0802.35142MR1269538
- R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 6, Méthodes intégrales et numériques. [Integral and numerical methods], Masson, Paris 1988. Zbl0662.73039MR944304
- A. DeSimone, H. Knüpfer and F. Otto, -d stability of the Néel wall, Calc. Var. Partial Differential Equations 27 (2006), 233-253. Zbl1158.78300MR2251994
- A. Desimone, R. V. Kohn, S. Müller and F. Otto, Magnetic microstructures-a paradigm of multiscale problems, In ICIAM 99 (Edinburgh), pages 175-190. Oxford Univ. Press, Oxford, 2000. Zbl0991.82038MR1824443
- A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. Zbl0986.49009MR1854999
- A. Desimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), 1408–1460. Zbl1027.82042MR1916988
- A. Desimone, R. V. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall, Multiscale Model. Simul. 1 (2003), 57–104. Zbl1059.82046MR1960841
- A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in: Science of Hysteresis, Elsevier, G. Bertotti and I Magyergyoz, Eds., 2005. Zbl1151.35426
- A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2983-2991. Zbl1065.74028MR1875089
- C.J. García-Cervera, Magnetic domains and magnetic domain walls, Ph.D. thesis, New-York University (1999).
- A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998.
- R. Ignat, A convergence result for the Néel wall, preprint. Zbl1175.49014
- R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), to appear. Zbl1158.78011
- R. Ignat and F. Otto, Compactness of the Landau state in thin-film micromagnetics, in preparation. Zbl1216.49041
- R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721–746. Zbl0928.35045MR1684723
- W. Jin and R. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000), 355–390. Zbl0973.49009MR1752602
- F. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), 737–761. Zbl0929.35076MR1676761
- C. Melcher, The logarithmic tail of Néel walls, Arch. Ration. Mech. Anal. 168 (2003), 83–113. Zbl1151.82437MR1991988
- C. Melcher, Logarithmic lower bounds for Néel walls, Calc. Var. Partial Differential Equations 21 (2004), 209–219. Zbl1054.78011MR2085302
- F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser Boston Inc., Boston, MA, 2000. Zbl0948.35003MR1763040
- R. Riedel and A. Seeger, Micromagnetic treatment of Néel walls, Phys. Stat. Sol. 46, 1971, 377–384.
- T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), 294–338. Zbl1031.35142MR1809740
- T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations 28 (2003), 249–269. Zbl1094.35125MR1974456
- E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379–403. Zbl0908.58004MR1607928
- H.A.M. van den Berg, Self-consistent domain theory in soft-ferromagnetic media. II, Basic domain structures in thin film objects, J. Appl. Phys. 60 (1986), 1104-1113.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.