A survey of some new results in ferromagnetic thin films

Radu Ignat[1]

  • [1] Laboratoire de Mathématiques, Université Paris-Sud 11, Bât. 425, 91405 Orsay, France

Séminaire Équations aux dérivées partielles (2007-2008)

  • Volume: 2007-2008, page 1-19

How to cite

top

Ignat, Radu. "A survey of some new results in ferromagnetic thin films." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-19. <http://eudml.org/doc/11182>.

@article{Ignat2007-2008,
affiliation = {Laboratoire de Mathématiques, Université Paris-Sud 11, Bât. 425, 91405 Orsay, France},
author = {Ignat, Radu},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Ginzburg-Landau type problems; van den Berg conjecture; Bloch lines; Néel wall},
language = {eng},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {A survey of some new results in ferromagnetic thin films},
url = {http://eudml.org/doc/11182},
volume = {2007-2008},
year = {2007-2008},
}

TY - JOUR
AU - Ignat, Radu
TI - A survey of some new results in ferromagnetic thin films
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 19
LA - eng
KW - Ginzburg-Landau type problems; van den Berg conjecture; Bloch lines; Néel wall
UR - http://eudml.org/doc/11182
ER -

References

top
  1. F. Alouges and S. Labbé, z-invariant micromagnetic configurations in cylindrical domains, preprint. 
  2. F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations, ESAIM Control Optim. Calc. Var. 8 (2002), 31–68. Zbl1092.82047MR1932944
  3. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. Zbl0960.49013MR1731470
  4. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1–16. MR924423
  5. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl0802.35142MR1269538
  6. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 6, Méthodes intégrales et numériques. [Integral and numerical methods], Masson, Paris 1988. Zbl0662.73039MR944304
  7. A. DeSimone, H. Knüpfer and F. Otto, 2 -d stability of the Néel wall, Calc. Var. Partial Differential Equations 27 (2006), 233-253. Zbl1158.78300MR2251994
  8. A. Desimone, R. V. Kohn, S. Müller and F. Otto, Magnetic microstructures-a paradigm of multiscale problems, In ICIAM 99 (Edinburgh), pages 175-190. Oxford Univ. Press, Oxford, 2000. Zbl0991.82038MR1824443
  9. A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. Zbl0986.49009MR1854999
  10. A. Desimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), 1408–1460. Zbl1027.82042MR1916988
  11. A. Desimone, R. V. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall, Multiscale Model. Simul. 1 (2003), 57–104. Zbl1059.82046MR1960841
  12. A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in: Science of Hysteresis, Elsevier, G. Bertotti and I Magyergyoz, Eds., 2005. Zbl1151.35426
  13. A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2983-2991. Zbl1065.74028MR1875089
  14. C.J. García-Cervera, Magnetic domains and magnetic domain walls, Ph.D. thesis, New-York University (1999). 
  15. A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998. 
  16. R. Ignat, A Γ - convergence result for the Néel wall, preprint. Zbl1175.49014
  17. R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), to appear. Zbl1158.78011
  18. R. Ignat and F. Otto, Compactness of the Landau state in thin-film micromagnetics, in preparation. Zbl1216.49041
  19. R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721–746. Zbl0928.35045MR1684723
  20. W. Jin and R. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000), 355–390. Zbl0973.49009MR1752602
  21. F. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), 737–761. Zbl0929.35076MR1676761
  22. C. Melcher, The logarithmic tail of Néel walls, Arch. Ration. Mech. Anal. 168 (2003), 83–113. Zbl1151.82437MR1991988
  23. C. Melcher, Logarithmic lower bounds for Néel walls, Calc. Var. Partial Differential Equations 21 (2004), 209–219. Zbl1054.78011MR2085302
  24. F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser Boston Inc., Boston, MA, 2000. Zbl0948.35003MR1763040
  25. R. Riedel and A. Seeger, Micromagnetic treatment of Néel walls, Phys. Stat. Sol. 46, 1971, 377–384. 
  26. T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), 294–338. Zbl1031.35142MR1809740
  27. T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations 28 (2003), 249–269. Zbl1094.35125MR1974456
  28. E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379–403. Zbl0908.58004MR1607928
  29. H.A.M. van den Berg, Self-consistent domain theory in soft-ferromagnetic media. II, Basic domain structures in thin film objects, J. Appl. Phys. 60 (1986), 1104-1113. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.