Page 1

Displaying 1 – 15 of 15

Showing per page

Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants

John W. Barrett, Linda El Alaoui (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy...

Generalized lubrification models blow-up and global existence result.

J. Emile Rakotoson, J. Michel Rakotoson, Cédric Verbeke (2005)

RACSAM

We study a general mathematical model linked with various physical models. Especially, we focus on those models established by King or Spencer-Davis-Voorhees related to thin films extending the lubrication model studied by Bernis-Friedman. According to the initial data, we prove that, either, blow up or global existence can be obtained.

Global Attractor for a Fourth-Order Parabolic Equation Modeling Epitaxial Thin Film Growth

Ning Duan, Xiaopeng Zhao (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

This paper is concerned with a fourth-order parabolic equation which models epitaxial growth of nanoscale thin films. Based on the regularity estimates for semigroups and the classical existence theorem of global attractors, we prove that the fourth order parabolic equation possesses a global attractor in a subspace of H², which attracts all the bounded sets of H² in the H²-norm.

Numerical methods for fourth order nonlinear degenerate diffusion problems

Jürgen Becker, Günther Grün, Martin Lenz, Martin Rumpf (2002)

Applications of Mathematics

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...

Numerical solution of a 1-d elastohydrodynamic problem in magnetic storage devices

Iñigo Arregui, José Jesús Cendán, Carlos Parés, Carlos Vázquez (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we present new numerical methods to simulate the mechanics of head-tape magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method and a...

On modeling flow between adjacent surfaces where the fluid is governed by implicit algebraic constitutive relations

Andreas Almqvist, Evgeniya Burtseva, Kumbakonam R. Rajagopal, Peter Wall (2024)

Applications of Mathematics

We consider pressure-driven flow between adjacent surfaces, where the fluid is assumed to have constant density. The main novelty lies in using implicit algebraic constitutive relations to describe the fluid's response to external stimuli, enabling the modeling of fluids whose responses cannot be accurately captured by conventional methods. When the implicit algebraic constitutive relations cannot be solved for the Cauchy stress in terms of the symmetric part of the velocity gradient, the traditional...

Currently displaying 1 – 15 of 15

Page 1