La méthode de concentration-compacité en calcul des variations
Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)
- page 1-15
Access Full Article
topHow to cite
topLions, P. L.. "La méthode de concentration-compacité en calcul des variations." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-15. <http://eudml.org/doc/111824>.
@article{Lions1982-1983,
author = {Lions, P. L.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La méthode de concentration-compacité en calcul des variations},
url = {http://eudml.org/doc/111824},
year = {1982-1983},
}
TY - JOUR
AU - Lions, P. L.
TI - La méthode de concentration-compacité en calcul des variations
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - fre
UR - http://eudml.org/doc/111824
ER -
References
top- [1] T. Aubin: Problèmes isopérimétriques et espaces de Sobolev. J. Diff. Geom., 11 (1976), p. 573-598. Zbl0371.46011MR448404
- [2] T. Aubin: Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., 55 (1976), p. 269-296. Zbl0336.53033MR431287
- [3] H. Berestycki et P.L. Lions: Non linear scalar fields equations, I et II. Arch. Rat. Mech. Anal., (1983). Zbl0533.35029
- [4] M.S. Berger: On the existence and structure of stationary states for a non linear Klein-Gordon equation. J. Funct. Anal., 9 (1972), p. 249-261. Zbl0224.35061MR299966
- [5] H. Brézis et E.H. Lieb: A relation between pointwise convergence of functions and convergence of functionals. A paraître dans Proc. Amer. Math. Soc. Zbl0526.46037
- [6] H. Brezis et L. Nirenberg: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Preprint. Zbl0541.35029MR709644
- [7] T. Cazenave et P.L. Lions: Orbital stability of standing waves for some non linear Schrödinger equations. Comm. Math. Phys., 85 (1982), p. 549-561. Zbl0513.35007MR677997
- [8] S. Coleman, V. Glazer et A. Martin: Action minima among solutions to a class of euclidean scalar field equations. Comm. Math. Phys., 58 (1978), p.211-221. MR468913
- [9] E.H. Lieb: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Preprint.
- [10] P.L. Lions: Principe de concentration-compacité en calcul des variations. C. R. Acad. Sc. Paris, 294 (1982), p. 261-264. Zbl0485.49005MR653747
- [11] P.L. Lions: The concentration-compactness principle in the Calculus of Variations; I. The locally compact case. A paraître dans Ann. I.H.P., Anal. Non Lin., 1984.
- [12] P.L. Lions: On the concentration-compactness principle. A paraître dans Contributions to Nonlinear Partial Differential Equations, Pitman, Londres, 1983. Zbl0522.49007MR730813
- [13] P.L. Lions: Applications de la méthode de concentration-compacité à l'existence de fonctions extrêmales. C. R. Acad. Sc. Paris, 1983. Zbl0522.49008
- [14] P.L. Lions: The concentration-compactness principle in the calculus of variations; II. The limit case. Zbl0704.49006
- [15] G. Rosen: Minimum value for c in the Sobolev inequality ∥Ø∥6≤C∥Ø∥2. SIAM J. Appl. Math., 21 (1971), p.30-32. Zbl0201.38704
- [16] J. Sacks et K. Uhlenbeck: The existence of minimal immersions of 2-spheres. Ann. Math.,113 (1981), p.1-24. Zbl0462.58014MR604040
- [17] S. Sedlacek: A direct method for minimizing the Yang-Mills functional over 4-manifolds. Comm. Math. Phys., 86 (1982), p. 515-528. Zbl0506.53016MR679200
- [18] w. Strauss: Existence of solitary waves in higher dimensions. Comm. Math. Phys.55, (1977), p. 149-162. Zbl0356.35028MR454365
- [19] B.R. Suydam: Self-focusing of very powerful laser beams. U.S. Dept. of Commerce N.B.S. special publications, 287.
- [20] G. Talenti: Best constant in Sobolev inequality. Ann. di Matem. Pura Appl., 110 (1976), p. 353-372. Zbl0353.46018MR463908
- [21] N.S. Trudinger: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Sup. Pisa, 22 (1968), p.265-274. Zbl0159.23801MR240748
- [22] H. Yamabe: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J., 12 (1960), p. 21-37. Zbl0096.37201MR125546
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.