La méthode de concentration-compacité en calcul des variations

P. L. Lions

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)

  • page 1-15

How to cite

top

Lions, P. L.. "La méthode de concentration-compacité en calcul des variations." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-15. <http://eudml.org/doc/111824>.

@article{Lions1982-1983,
author = {Lions, P. L.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La méthode de concentration-compacité en calcul des variations},
url = {http://eudml.org/doc/111824},
year = {1982-1983},
}

TY - JOUR
AU - Lions, P. L.
TI - La méthode de concentration-compacité en calcul des variations
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - fre
UR - http://eudml.org/doc/111824
ER -

References

top
  1. [1] T. Aubin: Problèmes isopérimétriques et espaces de Sobolev. J. Diff. Geom., 11 (1976), p. 573-598. Zbl0371.46011MR448404
  2. [2] T. Aubin: Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., 55 (1976), p. 269-296. Zbl0336.53033MR431287
  3. [3] H. Berestycki et P.L. Lions: Non linear scalar fields equations, I et II. Arch. Rat. Mech. Anal., (1983). Zbl0533.35029
  4. [4] M.S. Berger: On the existence and structure of stationary states for a non linear Klein-Gordon equation. J. Funct. Anal., 9 (1972), p. 249-261. Zbl0224.35061MR299966
  5. [5] H. Brézis et E.H. Lieb: A relation between pointwise convergence of functions and convergence of functionals. A paraître dans Proc. Amer. Math. Soc. Zbl0526.46037
  6. [6] H. Brezis et L. Nirenberg: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Preprint. Zbl0541.35029MR709644
  7. [7] T. Cazenave et P.L. Lions: Orbital stability of standing waves for some non linear Schrödinger equations. Comm. Math. Phys., 85 (1982), p. 549-561. Zbl0513.35007MR677997
  8. [8] S. Coleman, V. Glazer et A. Martin: Action minima among solutions to a class of euclidean scalar field equations. Comm. Math. Phys., 58 (1978), p.211-221. MR468913
  9. [9] E.H. Lieb: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Preprint. 
  10. [10] P.L. Lions: Principe de concentration-compacité en calcul des variations. C. R. Acad. Sc. Paris, 294 (1982), p. 261-264. Zbl0485.49005MR653747
  11. [11] P.L. Lions: The concentration-compactness principle in the Calculus of Variations; I. The locally compact case. A paraître dans Ann. I.H.P., Anal. Non Lin., 1984. 
  12. [12] P.L. Lions: On the concentration-compactness principle. A paraître dans Contributions to Nonlinear Partial Differential Equations, Pitman, Londres, 1983. Zbl0522.49007MR730813
  13. [13] P.L. Lions: Applications de la méthode de concentration-compacité à l'existence de fonctions extrêmales. C. R. Acad. Sc. Paris, 1983. Zbl0522.49008
  14. [14] P.L. Lions: The concentration-compactness principle in the calculus of variations; II. The limit case. Zbl0704.49006
  15. [15] G. Rosen: Minimum value for c in the Sobolev inequality ∥Ø∥6≤C∥Ø∥2. SIAM J. Appl. Math., 21 (1971), p.30-32. Zbl0201.38704
  16. [16] J. Sacks et K. Uhlenbeck: The existence of minimal immersions of 2-spheres. Ann. Math.,113 (1981), p.1-24. Zbl0462.58014MR604040
  17. [17] S. Sedlacek: A direct method for minimizing the Yang-Mills functional over 4-manifolds. Comm. Math. Phys., 86 (1982), p. 515-528. Zbl0506.53016MR679200
  18. [18] w. Strauss: Existence of solitary waves in higher dimensions. Comm. Math. Phys.55, (1977), p. 149-162. Zbl0356.35028MR454365
  19. [19] B.R. Suydam: Self-focusing of very powerful laser beams. U.S. Dept. of Commerce N.B.S. special publications, 287. 
  20. [20] G. Talenti: Best constant in Sobolev inequality. Ann. di Matem. Pura Appl., 110 (1976), p. 353-372. Zbl0353.46018MR463908
  21. [21] N.S. Trudinger: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Sup. Pisa, 22 (1968), p.265-274. Zbl0159.23801MR240748
  22. [22] H. Yamabe: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J., 12 (1960), p. 21-37. Zbl0096.37201MR125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.