Solutions positives de l’équation - Δ u = u p + μ u q dans un domaine à trou

Rejeb Hadiji

Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)

  • Volume: 11, Issue: 3, page 55-71
  • ISSN: 0240-2963

How to cite

top

Hadiji, Rejeb. "Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.3 (1990): 55-71. <http://eudml.org/doc/73267>.

@article{Hadiji1990,
author = {Hadiji, Rejeb},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {positive solution; critical Sobolv exponent; domain with hole; semilinear equation},
language = {fre},
number = {3},
pages = {55-71},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou},
url = {http://eudml.org/doc/73267},
volume = {11},
year = {1990},
}

TY - JOUR
AU - Hadiji, Rejeb
TI - Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 3
SP - 55
EP - 71
LA - fre
KW - positive solution; critical Sobolv exponent; domain with hole; semilinear equation
UR - http://eudml.org/doc/73267
ER -

References

top
  1. [1] Bahri ( A.) and Coron ( J.M.) .— On a non linear elliptic equation involving the critical Sobolev exponent. The effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988) pp. 253-294. Zbl0649.35033MR929280
  2. [2] Brezis ( H.) .— Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math., 39 (1986) pp. S.17-S.39. Zbl0601.35043MR861481
  3. [3] Brezis ( H.) and Nirenberg ( L.) Livre en préparation. 
  4. [4] Brezis ( H.) and Nirenberg ( L.) .— Positive solutions of elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983) pp. 437-477. Zbl0541.35029MR709644
  5. [5] Brezis ( H.) and Coron ( J.M.) .- Convergence of solutions of H-systems or how to blow bubbles, Archive Rat. Mech. Anal., 89 (1985) pp. 21-56. Zbl0584.49024MR784102
  6. [6] Coron ( J.M.) .— Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc., Paris, 299 (1984) pp. 209-211. Zbl0569.35032MR762722
  7. [7] Ding ( W.Y.) .— Positive solutions of Δu + u(N+2)/(N+2) = 0 on contractible domains, à paraître. Zbl0694.35067
  8. [8] Lewandowski ( R.) .— Little holes and convergence of solutions of -Δu = u(N+2)/(N+2), à paraître. Zbl0713.35008
  9. [9] Lions ( P.L.) .— La méthode de concentration-compacitéen calcul des variationsSeminaire Goulaouic-Meyer-Schwartz, (1982-1983). MR716902
  10. [10] Lions ( P.L.) .- The concentration-compactness principle in calculus of variations. Part 1 and 2, Riv. Math. Iberoamericana, 1 (1985) pp. 145-201 et pp. 45-121. Zbl0704.49006MR850686
  11. [11] Mancini ( G.) and Musina ( R.) .— Holes and obstacles, Ann. I.H.P. Analyse non linéaire, 5 (1988) pp. 323-345. Zbl0666.35039MR963103
  12. [12] Pohozaev ( S.J.) . — Eingenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Doklady, 6 (1965) pp. 1408-1411. Zbl0141.30202
  13. [13] Rey ( O.) .— Sur un problème variationnel non compact : l'effet de petits trous dans le domaine, C.R. Acad. Sc.Paris, 308 (1989) pp. 349-352. Zbl0686.35047MR992090
  14. [14] Struwe ( M.) .- A global compactness result for elliptic boundary problem involving nonlinearities, Math. Z., 187 (1984) pp. 511-517. Zbl0535.35025MR760051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.