Solutions positives de l’équation dans un domaine à trou
Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)
- Volume: 11, Issue: 3, page 55-71
- ISSN: 0240-2963
Access Full Article
topHow to cite
topHadiji, Rejeb. "Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.3 (1990): 55-71. <http://eudml.org/doc/73267>.
@article{Hadiji1990,
author = {Hadiji, Rejeb},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {positive solution; critical Sobolv exponent; domain with hole; semilinear equation},
language = {fre},
number = {3},
pages = {55-71},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou},
url = {http://eudml.org/doc/73267},
volume = {11},
year = {1990},
}
TY - JOUR
AU - Hadiji, Rejeb
TI - Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 3
SP - 55
EP - 71
LA - fre
KW - positive solution; critical Sobolv exponent; domain with hole; semilinear equation
UR - http://eudml.org/doc/73267
ER -
References
top- [1] Bahri ( A.) and Coron ( J.M.) .— On a non linear elliptic equation involving the critical Sobolev exponent. The effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988) pp. 253-294. Zbl0649.35033MR929280
- [2] Brezis ( H.) .— Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math., 39 (1986) pp. S.17-S.39. Zbl0601.35043MR861481
- [3] Brezis ( H.) and Nirenberg ( L.) Livre en préparation.
- [4] Brezis ( H.) and Nirenberg ( L.) .— Positive solutions of elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983) pp. 437-477. Zbl0541.35029MR709644
- [5] Brezis ( H.) and Coron ( J.M.) .- Convergence of solutions of H-systems or how to blow bubbles, Archive Rat. Mech. Anal., 89 (1985) pp. 21-56. Zbl0584.49024MR784102
- [6] Coron ( J.M.) .— Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc., Paris, 299 (1984) pp. 209-211. Zbl0569.35032MR762722
- [7] Ding ( W.Y.) .— Positive solutions of Δu + u(N+2)/(N+2) = 0 on contractible domains, à paraître. Zbl0694.35067
- [8] Lewandowski ( R.) .— Little holes and convergence of solutions of -Δu = u(N+2)/(N+2), à paraître. Zbl0713.35008
- [9] Lions ( P.L.) .— La méthode de concentration-compacitéen calcul des variationsSeminaire Goulaouic-Meyer-Schwartz, (1982-1983). MR716902
- [10] Lions ( P.L.) .- The concentration-compactness principle in calculus of variations. Part 1 and 2, Riv. Math. Iberoamericana, 1 (1985) pp. 145-201 et pp. 45-121. Zbl0704.49006MR850686
- [11] Mancini ( G.) and Musina ( R.) .— Holes and obstacles, Ann. I.H.P. Analyse non linéaire, 5 (1988) pp. 323-345. Zbl0666.35039MR963103
- [12] Pohozaev ( S.J.) . — Eingenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Doklady, 6 (1965) pp. 1408-1411. Zbl0141.30202
- [13] Rey ( O.) .— Sur un problème variationnel non compact : l'effet de petits trous dans le domaine, C.R. Acad. Sc.Paris, 308 (1989) pp. 349-352. Zbl0686.35047MR992090
- [14] Struwe ( M.) .- A global compactness result for elliptic boundary problem involving nonlinearities, Math. Z., 187 (1984) pp. 511-517. Zbl0535.35025MR760051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.