Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills
Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)
- page 1-15
Access Full Article
topHow to cite
topBourguignon, J. P.. "Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-15. <http://eudml.org/doc/111828>.
@article{Bourguignon1982-1983,
author = {Bourguignon, J. P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Riemannian manifolds; analytic problems; Yang Mills equations; euclidean space-time; fiber bundles; Euler-Lagrange equations; Yang Mills action functional; invariance; gauge group; finite action solutions; existence; self-dual connections},
language = {fre},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills},
url = {http://eudml.org/doc/111828},
year = {1982-1983},
}
TY - JOUR
AU - Bourguignon, J. P.
TI - Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - fre
KW - Riemannian manifolds; analytic problems; Yang Mills equations; euclidean space-time; fiber bundles; Euler-Lagrange equations; Yang Mills action functional; invariance; gauge group; finite action solutions; existence; self-dual connections
UR - http://eudml.org/doc/111828
ER -
References
top- [1] J.P. Bourguignon, H.B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys.79 (1981), 189-230. Zbl0475.53060MR612248
- [2] J.P. Bourguignon, H.B. Lawson, Yang-Mills theory: its physical origin and differential geometric aspects, in Seminar on Differential Geometry edited by S.T. Yau, Annals of Mathematical Studies N° 102, Princeton University Press, Princeton, (1982). Zbl0482.58007MR645750
- [3] J. Dodziuk, MIN'OO, An L2- isolation theorem for Yang-Mills fields over complete manifolds, Compositio Mathematica47 (1982), 165-169. Zbl0518.53039MR677018
- [4] S.K. Donaldson, An application of gauge theory to four dimensional topology, à paraître au J. of Differential Geometry. Zbl0507.57010MR710056
- [5] D.G. Ebin, Espace des métriques riemanniennes et mouvement des fluides via les variétés d'applications, Notes de Cours, Ecole Polytechnique, (1972). Zbl0242.58002
- [6] N. Hitchin, The Yang-Mills equations and the topology of 4-manifolds, Exposé n°606 au séminaire Bourbaki, (1983). Zbl0533.57007
- [7] J. Iliopoulos, Unified theories of elementary particle interactions, Contemp. Phys.21 (1980), 159-183.
- [8] A. Jaffe, C. Taubes, Vortices and Monopoles, Birkhäuser, Boston, (1980). Zbl0457.53034MR614447
- [9] Min'Oo, An L2-isolation theorem for Yang-Mills fields, Composition Mathematica47 (1982), 153-163. Zbl0519.53042MR677017
- [10] R.S. Palais, Foundations of global non-linear analysis, Benjamin, New York (1968). Zbl0164.11102MR248880
- [11] S. Sedlacek, A direct method for minimizing the Yang-Mills functional over 4-manifolds, Comm. Math. Phys. Zbl0506.53016MR679200
- [12] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, (1951). Zbl0054.07103MR39258
- [13] S. Sternberg, Lectures on differential geometry, Prentice Hall,, (1964). Zbl0129.13102MR193578
- [14] C. Taubes, Self-dual Yang-Mills connections on non self-dual 4-manifolds, à paraître au J. of Differential Geometry. Zbl0484.53026MR658473
- [15] C. Taubes, The existence of a non-minimal solution to the SU2 - Yang-Mills-Higgs equation on R3, Parts I-II, Comm. Math. Phys.86 (1982), 299-320. Zbl0514.58017MR677000
- [16] C. Taubes, Self-dual connections on 4-manifolds with indefinite intersection matrix, Preprint, Harvard University. Zbl0552.53011MR755237
- [17] K.K. Uhlenbeck, Connections with Lp-bounds on curvature, Comm. Math. Phys.83 (1982), 31-42. Zbl0499.58019MR648356
- [18] K.K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys.83 (1982), 11-29. Zbl0491.58032MR648355
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.