Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills

J. P. Bourguignon

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)

  • page 1-15

How to cite

top

Bourguignon, J. P.. "Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-15. <http://eudml.org/doc/111828>.

@article{Bourguignon1982-1983,
author = {Bourguignon, J. P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Riemannian manifolds; analytic problems; Yang Mills equations; euclidean space-time; fiber bundles; Euler-Lagrange equations; Yang Mills action functional; invariance; gauge group; finite action solutions; existence; self-dual connections},
language = {fre},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills},
url = {http://eudml.org/doc/111828},
year = {1982-1983},
}

TY - JOUR
AU - Bourguignon, J. P.
TI - Introduction aux problèmes analytiques posés par le système des équations de Yang-Mills
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - fre
KW - Riemannian manifolds; analytic problems; Yang Mills equations; euclidean space-time; fiber bundles; Euler-Lagrange equations; Yang Mills action functional; invariance; gauge group; finite action solutions; existence; self-dual connections
UR - http://eudml.org/doc/111828
ER -

References

top
  1. [1] J.P. Bourguignon, H.B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys.79 (1981), 189-230. Zbl0475.53060MR612248
  2. [2] J.P. Bourguignon, H.B. Lawson, Yang-Mills theory: its physical origin and differential geometric aspects, in Seminar on Differential Geometry edited by S.T. Yau, Annals of Mathematical Studies N° 102, Princeton University Press, Princeton, (1982). Zbl0482.58007MR645750
  3. [3] J. Dodziuk, MIN'OO, An L2- isolation theorem for Yang-Mills fields over complete manifolds, Compositio Mathematica47 (1982), 165-169. Zbl0518.53039MR677018
  4. [4] S.K. Donaldson, An application of gauge theory to four dimensional topology, à paraître au J. of Differential Geometry. Zbl0507.57010MR710056
  5. [5] D.G. Ebin, Espace des métriques riemanniennes et mouvement des fluides via les variétés d'applications, Notes de Cours, Ecole Polytechnique, (1972). Zbl0242.58002
  6. [6] N. Hitchin, The Yang-Mills equations and the topology of 4-manifolds, Exposé n°606 au séminaire Bourbaki, (1983). Zbl0533.57007
  7. [7] J. Iliopoulos, Unified theories of elementary particle interactions, Contemp. Phys.21 (1980), 159-183. 
  8. [8] A. Jaffe, C. Taubes, Vortices and Monopoles, Birkhäuser, Boston, (1980). Zbl0457.53034MR614447
  9. [9] Min'Oo, An L2-isolation theorem for Yang-Mills fields, Composition Mathematica47 (1982), 153-163. Zbl0519.53042MR677017
  10. [10] R.S. Palais, Foundations of global non-linear analysis, Benjamin, New York (1968). Zbl0164.11102MR248880
  11. [11] S. Sedlacek, A direct method for minimizing the Yang-Mills functional over 4-manifolds, Comm. Math. Phys. Zbl0506.53016MR679200
  12. [12] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, (1951). Zbl0054.07103MR39258
  13. [13] S. Sternberg, Lectures on differential geometry, Prentice Hall,, (1964). Zbl0129.13102MR193578
  14. [14] C. Taubes, Self-dual Yang-Mills connections on non self-dual 4-manifolds, à paraître au J. of Differential Geometry. Zbl0484.53026MR658473
  15. [15] C. Taubes, The existence of a non-minimal solution to the SU2 - Yang-Mills-Higgs equation on R3, Parts I-II, Comm. Math. Phys.86 (1982), 299-320. Zbl0514.58017MR677000
  16. [16] C. Taubes, Self-dual connections on 4-manifolds with indefinite intersection matrix, Preprint, Harvard University. Zbl0552.53011MR755237
  17. [17] K.K. Uhlenbeck, Connections with Lp-bounds on curvature, Comm. Math. Phys.83 (1982), 31-42. Zbl0499.58019MR648356
  18. [18] K.K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys.83 (1982), 11-29. Zbl0491.58032MR648355

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.