An L 2 -isolation theorem for Yang-Mills fields

Min-Oo

Compositio Mathematica (1982)

  • Volume: 47, Issue: 2, page 153-163
  • ISSN: 0010-437X

How to cite

top

Min-Oo. "An $L_2$-isolation theorem for Yang-Mills fields." Compositio Mathematica 47.2 (1982): 153-163. <http://eudml.org/doc/89565>.

@article{Min1982,
author = {Min-Oo},
journal = {Compositio Mathematica},
keywords = {isolation phenomena; Yang-Mills fields; Sobolev inequalities},
language = {eng},
number = {2},
pages = {153-163},
publisher = {Martinus Nijhoff Publishers},
title = {An $L_2$-isolation theorem for Yang-Mills fields},
url = {http://eudml.org/doc/89565},
volume = {47},
year = {1982},
}

TY - JOUR
AU - Min-Oo
TI - An $L_2$-isolation theorem for Yang-Mills fields
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 2
SP - 153
EP - 163
LA - eng
KW - isolation phenomena; Yang-Mills fields; Sobolev inequalities
UR - http://eudml.org/doc/89565
ER -

References

top
  1. [1] M.F. Atiyah, V.G. Drinfeld, N.J. Hitchin and Y.I. Manin: Construction of instantons. Phys. Lett.65A (1978) 185-187. Zbl0424.14004MR598562
  2. [2] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional riemannian geometry. Proc. Royal Soc. LondonA362 (1978) 425-461. Zbl0389.53011MR506229
  3. [3] J.P. Bourguignon, H.B. Lawson, Jr. and J. Simons: Stability and gap phenomena for Yang-Mills fields. Proc. Nat. Acad. Sci. U.S.A.76 (1979) 1550-1553. Zbl0408.53023MR526178
  4. [4] J.P. Bourguignon and H.B. Lawson, JR.: Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys.79 (1981) 189-230. Zbl0475.53060MR612248
  5. [5] V.G. Drinfeld and Y.I. Manin: A description of instantons. Comm. Math. Phys.63 (1978) 177-192. Zbl0407.22017MR513898
  6. [6] P. Li: On the Sobolev constant and the p-Spectrum of a compact Riemannian manifold, Ann. scient. Éc. Norm. Sup., 4e série, t. 13, 1980, pp 451-469. Zbl0466.53023MR608289
  7. [7] C.-L. Shen: On the sourceless SU(N) gauge field over a four-dimensional self-dual compact riemannian manifold with positive scalar curvature, preprint. Zbl0519.53043MR714377
  8. [8] I.M. Singer and J.A. Thorpe: The curvature of 4-dimensional Einstein spaces. In: Global analysis, Papers in honor of K. Kodaira. Princeton Univ. Press, Princeton, 1969, pp 355-365. Zbl0199.25401MR256303

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.