Anisotropic inverse problems and Carleman estimates
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-17
Access Full Article
topAbstract
topHow to cite
topDos Santos Ferreira, David. "Anisotropic inverse problems and Carleman estimates." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-17. <http://eudml.org/doc/11183>.
@article{DosSantosFerreira2007-2008,
abstract = {This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic inverse problems in dimension $n \ge 3$.},
author = {Dos Santos Ferreira, David},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {anisotropic Calderón problem; geometrical optics solutions; Schrödinger equation; inverse problems; Carleman estimates},
language = {eng},
pages = {1-17},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Anisotropic inverse problems and Carleman estimates},
url = {http://eudml.org/doc/11183},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Dos Santos Ferreira, David
TI - Anisotropic inverse problems and Carleman estimates
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 17
AB - This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic inverse problems in dimension $n \ge 3$.
LA - eng
KW - anisotropic Calderón problem; geometrical optics solutions; Schrödinger equation; inverse problems; Carleman estimates
UR - http://eudml.org/doc/11183
ER -
References
top- Yu. E. Anikonov, Some methods for the study of multidimensional inverse problems for differential equations, Nauka Sibirsk. Otdel, Novosibirsk (1978). MR504333
- K. Astala, M. Lassas, L. Päivärinta, Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207–224. Zbl1129.35483
- K. Astala, L. Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265–299. Zbl1111.35004
- D. C. Barber, B. H. Brown, Progress in electrical impedance tomography, in Inverse problems in partial differential equations, edited by D. Colton, R. Ewing, and W. Rundell, SIAM, Philadelphia (1990), 151–164. Zbl0714.65095MR1046435
- R. M. Brown, G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997), 1009–1027. Zbl0884.35167MR1452176
- A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, Sociedade Brasileira de Matematica, (1980), 65–73. MR590275
- D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand, G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467–488. Zbl1148.35096MR2287913
- D. Dos Santos Ferreira, C. E. Kenig, M. Salo, G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, preprint (2008), arXiv:0803.3508. Zbl1181.35327
- C. Guillarmou, A. Sa Barreto, Inverse problems for Einstein manifolds, preprint (2007), arXiv:0710.1136. Zbl1229.58025
- L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. Zbl0601.35001MR781536
- H. Isozaki, Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidean space, Amer. J. Math., 126 (2004), 1261–1313. Zbl1069.35092MR2102396
- C. E. Kenig, J. Sjöstrand, G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567–591. Zbl1127.35079MR2299741
- K. Knudsen, M. Salo, Determining non-smooth first order terms from partial boundary measurements, Inverse Problems and Imaging, 1 (2007), 349–369. Zbl1122.35152MR2282273
- R. Kohn, M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, edited by D. McLaughlin, SIAM-AMS Proc. No. 14, Amer. Math. Soc., Providence (1984), 113–123. Zbl0573.35084MR773707
- M. Lassas, M. Taylor, G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207–221. Zbl1077.58012MR2014876
- M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sc. ENS, 34 (2001), 771–787. Zbl0992.35120MR1862026
- J. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurement, Comm. Pure Appl. Math., 42 (1989), 1097–1112. Zbl0702.35036MR1029119
- W. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134. Zbl0868.35140MR1435872
- R. G. Mukhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (Russian), Dokl. Akad. Nauk SSSR, 232 (1977), 32-35. Zbl0372.53034MR431074
- A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71–96. Zbl0857.35135MR1370758
- G. Nakamura, Z. Sun, G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377–388. Zbl0843.35134MR1354996
- L. Päivärinta, A. Panchenko, G. Uhlmann, Complex geometric optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana 19 (2003), 57–72. Zbl1055.35144MR1993415
- L. E. Payne, H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rat. Mech. Anal., 5 (1960), 286–292. Zbl0099.08402MR117419
- M. Salo, Inverse boundary value problems for the magnetic Schrödinger equation, J. Phys. Conf. Series, 73 (2007), 012020.
- M. Salo, L. Tzou Carleman estimates and inverse problems for Dirac operators, preprint, 2007.
- V. Sharafutdinov, Integral geometry of tensor fields, in Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. Zbl0883.53004MR1374572
- V. Sharafutdinov, On emission tomography of inhomogeneous media, SIAM J. Appl. Math., 55 (1995), 707–718. Zbl0843.92013MR1331582
- Z. Sun, G. Uhlmann, Generic uniqueness for an inverse boundary value problem, Duke Math. J., 62 (1991), 131–155. Zbl0728.35132MR1104326
- Z. Sun, G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems, 19 (2003), 1001–1010. Zbl1054.35139MR2024685
- J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201–232. Zbl0709.35102MR1038142
- J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153–169. Zbl0625.35078MR873380
- J. Sylvester, G. Uhlmann, Inverse boundary value problems at the boundary – continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197–219. Zbl0632.35074MR924684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.