Constructions de fonctions holomorphes bornées

N. Sibony

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)

  • page 1-5

How to cite

top

Sibony, N.. "Constructions de fonctions holomorphes bornées." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-5. <http://eudml.org/doc/111832>.

@article{Sibony1982-1983,
author = {Sibony, N.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {approximation by plurisubharmonic function; real analytic function; approximation by bounded holomorphic function; tangential Cauchy-Riemann equation},
language = {fre},
pages = {1-5},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Constructions de fonctions holomorphes bornées},
url = {http://eudml.org/doc/111832},
year = {1982-1983},
}

TY - JOUR
AU - Sibony, N.
TI - Constructions de fonctions holomorphes bornées
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 5
LA - fre
KW - approximation by plurisubharmonic function; real analytic function; approximation by bounded holomorphic function; tangential Cauchy-Riemann equation
UR - http://eudml.org/doc/111832
ER -

References

top
  1. [1] Aleksandrov, A.B.Existence des fonctions internes dans la boule. Mat. Sornik (1982), 147-163 (en russe). Zbl0503.32001
  2. [2] Hakim, M. et Sibony, N.Fonctions holomorphes bornées sur la boule unité de Cp. Invent. Math.67 (1982), 213-222. Zbl0475.32007MR665153
  3. [3] Hakim, M. et Sibony, N.Valeurs au bord des modules de fonctions holomorphes. Math. Ann. (à paraître). Zbl0514.32008MR711878
  4. [4] Hakim, M. et Sibony, N.Fonctions holomorphes bornées et limites tangentielles. Duke Math. Journal50 (1983), 133-141. Zbl0514.32003MR700133
  5. [5] Harvey, R. et Polking, J.Removable singularities of solutions of linear partial differential equations. Acta Math.125 (1970), 39-56. Zbl0214.10001MR279461
  6. [6] Löw, E.A construction of inner functions on the unit ball in Cp. Invent. Math.67 (1982), 223-229. Zbl0528.32006MR665154
  7. [7] Löw, E.Inner functions and boundary values in H∞ (Ω) and A(Ω) in smoothly bounded pseudo-convex domains. Ph. D., Princeton Univ., June 1983. Zbl0526.32017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.