On Bernoulli decomposition of random variables and recent various applications

François Germinet[1]

  • [1] Univ Cergy-Pontoise, CNRS, IUF, Département de Mathématiques, F-95000 Cergy-Pontoise, France

Séminaire Équations aux dérivées partielles (2007-2008)

  • Volume: 2007-2008, page 1-12

Abstract

top
In this review, we first recall a recent Bernoulli decomposition of any given non trivial real random variable. While our main motivation is a proof of universal occurence of Anderson localization in continuum random Schrödinger operators, we review other applications like Sperner theory of antichains, anticoncentration bounds of some functions of random variables, as well as singularity of random matrices.

How to cite

top

Germinet, François. "On Bernoulli decomposition of random variables and recent various applications." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-12. <http://eudml.org/doc/11184>.

@article{Germinet2007-2008,
abstract = {In this review, we first recall a recent Bernoulli decomposition of any given non trivial real random variable. While our main motivation is a proof of universal occurence of Anderson localization in continuum random Schrödinger operators, we review other applications like Sperner theory of antichains, anticoncentration bounds of some functions of random variables, as well as singularity of random matrices.},
affiliation = {Univ Cergy-Pontoise, CNRS, IUF, Département de Mathématiques, F-95000 Cergy-Pontoise, France},
author = {Germinet, François},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On Bernoulli decomposition of random variables and recent various applications},
url = {http://eudml.org/doc/11184},
volume = {2007-2008},
year = {2007-2008},
}

TY - JOUR
AU - Germinet, François
TI - On Bernoulli decomposition of random variables and recent various applications
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 12
AB - In this review, we first recall a recent Bernoulli decomposition of any given non trivial real random variable. While our main motivation is a proof of universal occurence of Anderson localization in continuum random Schrödinger operators, we review other applications like Sperner theory of antichains, anticoncentration bounds of some functions of random variables, as well as singularity of random matrices.
LA - eng
UR - http://eudml.org/doc/11184
ER -

References

top
  1. Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163-1182 (1994) Zbl0843.47039MR1301371
  2. Aizenman, M., Elgart, A., Naboko, S., Schenker, J., Stolz, G.: Moment analysis for localization in random Schrödinger operators. Inv. Math. 163, 343-413 (2006) Zbl1090.81026MR2207021
  3. Aizenman, M., Germinet, F., Klein, A., Warzel, S.: On Bernoulli decompositions for random variables, concentration bounds and spectral localization, to appear in Prob. Th. Rel. F. Zbl1152.60020
  4. Aizenman, M., Molchanov, S.: Localization at large disorder and extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245-278 (1993) Zbl0782.60044MR1244867
  5. Anderson, I.: Combinatorics of finite sets. Corrected reprint of the 1989 edition. Dover Publications Inc. Mineola, NY, 2002. Zbl0995.05001MR1902962
  6. B. Bollobas, Random graphs, Academic Press 1985. Zbl0567.05042MR809996
  7. Bourgain, J., Kenig, C.: On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math. 161, 389-426 (2005) Zbl1084.82005MR2180453
  8. Bruneau, L., Germinet, F.: On the singularity of random matrices with independent entries. To appear in Proc. AMS. Zbl1227.15029
  9. Combes, J.M., Hislop, P.D.: Localization for some continuous, random Hamiltonians in d-dimension. J. Funct. Anal. 124, 149-180 (1994) Zbl0801.60054MR1284608
  10. Combes, J.M., Hislop, P.D., Klopp, F.: Hölder continuity of the integrated density of states for some random operators at all energies. IMRN 4, 179-209 (2003) Zbl1022.47028MR1935272
  11. Combes, J.M., Hislop, P.D., Klopp, F.: Optimal Wegner estimate. Duke Math. J. 140, 469-498 (2007) Zbl1134.81022MR2362242
  12. Combes, J.M., Hislop, P.D., Klopp, F. Nakamura, S.: The Wegner estimate and the integrated density of states for some random operators. Spectral and inverse spectral theory (Goa, 2000), Proc. Indian Acad. Sci. Math. Sci. 112 , 31-53 (2002) Zbl1009.47060MR1894541
  13. Combes, J.M., Hislop, P.D., Klopp, F, Raikov, G..: Global continuity of the integrated density of states for random Landau Hamiltonians. Comm. Partial Differential Equations. 29, 1187-1213 (2004) Zbl1085.47050MR2097581
  14. Combes, J.M., Hislop, P.D., Nakamura, S.: The L p -theory of the spectral shift function, the Wegner estimate and the integrated density of states for some random operators. Commun. Math. Phys. 218, 113-130 (2001) Zbl1042.82024MR1824200
  15. Damanik, D., Sims, R., Stolz, G.: Localization for one dimensional, continuum, Bernoulli-Anderson models. Duke Math. J. 114, 59-100 (2002) Zbl1107.82025MR1915036
  16. Damanik, D., Stollmann, P.: Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11, 11-29 (2001) Zbl0976.60064MR1829640
  17. Del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one pertubations and localization. J. d’Analyse Math. 69, 153-200 (1996) Zbl0908.47002
  18. Doeblin, W.: Sur les sommes d’un grand nombre de variables aléatoires indépendantes, Bull. Sci. Math. 63 23–64 (1939). Zbl0021.14602
  19. Doeblin, W, Lévy, P.: Calcul des probabilités. Sur les sommes de variables aléatoires indépendantes à dispersions bornées inférieurement, C.R. Acad. Sci. 202 2027-2029 (1936). 
  20. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285-299 (1989) Zbl0698.60051MR1012868
  21. Engel, K.: Optimal representations of partially ordered sets and a limit Sperner theorem. European J. Combin. 7, 287-302 (1986) Zbl0651.05014MR868549
  22. Engel, K.: Sperner theory. Encyclopedia of Mathematics and its Applications 65. Cambridge University Press, Cambridge, 1997. Zbl0868.05001MR1429390
  23. Erdös, P.: On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51, 898–902 (1945). Zbl0063.01270MR14608
  24. Esseen, C. G.: On the concentration function of a sum of independent random variables Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 290-308 (1968). Zbl0195.19303MR231419
  25. Fröhlich, J.: Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21-46 (1985) Zbl0573.60096MR814541
  26. Fröhlich, J., Spencer, T.: Absence of diffusion with Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151-184 (1983) Zbl0519.60066MR696803
  27. Germinet, F.: Dynamical localization II with an application to the almost Mathieu operator. J. Stat Phys. 95, 273-286 (1999) Zbl0942.60102MR1705587
  28. Germinet, F.: Recent advances about localization in continuum random Schrödinger operators with an extension to underlying Delone sets. Proceedings of Qmath10 conference, Moeciu 2007. To appear. Zbl1156.81018
  29. Germinet, F., De Bièvre, S.: Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194, 323-341 (1998) Zbl0911.60099MR1627657
  30. Germinet, F., Hislop, P., Klein, A.: On localization for the Schrödinger operator with a Poisson random potential. C.R. Acad. Sci. Paris Ser. I 341, 525-528 (2005) Zbl1083.35078MR2180822
  31. Germinet, F., Hislop, P., Klein, A.: Localization for the Schrödinger operator with a Poisson random potential. J. Europ. Math. Soc. 9, 577-607 (2007) Zbl1214.82053MR2314108
  32. Germinet, F., Hislop, P., Klein, A.: Localization at low energies for attractive Poisson random Schrödinger operators. Probability and Mathematical Physics: A Volume in Honor of Stanislav Molchanov, CRM Proceedings and Lecture Notes 42, 2007 Zbl1149.35064MR2352267
  33. Germinet, F., Klein, A.: Bootstrap Multiscale Analysis and Localization in Random Media. Commun. Math. Phys. 222, 415-448 (2001) Zbl0982.82030MR1859605
  34. Germinet, F., Klein, A.: New characterizations of the region of complete localization for random Schrödinger operators. J. Stat. Phys. 122, 73-94 (2006) Zbl1127.82031MR2203782
  35. Germinet, F., Klein, A.: Localization for some Cantor-Anderson Schrödinger operators. Adventures in Mathematical Physics, Contemp. Math., vol. 447, 2007 Zbl1137.81011
  36. Germinet, F., Klein, A.: Universal occurence of localization for some continuum random Schrödinger operators. In preparation. Zbl1127.82031
  37. Germinet, F, Klein, A., Schenker, J.: Dynamical delocalization in random Landau Hamiltonians. Annals of Math. 166, 215-244 (2007). Zbl1159.82009MR2342695
  38. Gol’dsheid, Ya., Molchanov, S., Pastur, L.: Pure point spectrum of stochastic one dimensional Schrödinger operators. Funct. Anal. Appl. 11, 1–10 (1977). Zbl0368.34015
  39. Hundertmark, D., Killip, R., Nakamura, S., Stollmann, P., Veselić, I.: Bounds on the spectral shift function and the density of states. Comm. Math. Phys. 262, 489-503 (2006). Zbl1121.47006MR2200269
  40. Ignatiouk-Robert, I.: Martin boundary of a killed random walk on a half-space, J. th. prob. 21, (2008). Zbl1146.60061MR2384472
  41. J. Kahn, J. Komlós, E. Szemerédi, On the probability that a random ± 1 matrix is singular, J. Amer. Math. Soc. 8, 223-240 (1995). Zbl0829.15018MR1260107
  42. Kesten, H.: A sharper form of the Doeblin-Lévy-Kolmogorov-Rogozin inequality for concentration functions. Math. Scand. 25, 133-144 (1969). Zbl0218.60035MR258095
  43. Kirsch, W., Martinelli, F.: On the ergodic properties of the spectrum of general random operators. J. Reine Angew. Math. 334, 141-156 (1982) Zbl0476.60058MR667454
  44. Kirsch, W., Stollman, P., Stolz, G.: Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations 6, 241-268 (1998) Zbl0927.60067MR1630995
  45. Klein, A.: Multiscale analysis and localization of random operators. In Random Schrodinger operators: methods, results, and perspectives. Panorama & Synthèse, Société Mathématique de France. To appear. 
  46. Klopp, F.: Localization for continuous random Schrödinger operators. Commun. Math. Phys. 167, 553-569 (1995) Zbl0820.60044MR1316760
  47. Klopp, F.: Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J. 98, 335-396 (1999) Zbl1060.82509MR1695202
  48. Klopp F.: Weak disorder localization and Lifshitz tails: continuous Hamiltonians. Ann. Henri Poincaré 3, 711-737 (2002) Zbl1016.60095MR1933367
  49. Kolmogorov, A. N.: Sur les propriétés des fonctions de concentration de M. P. Lévy. Ann. Inst. H. Poincaré 16, 27-34 (1958-60). Zbl0105.11804MR101545
  50. J. Komlós, On the determinant of ( 0 , 1 ) matrices, Studia. Sci. Math. Hungar. 2, 7-22 (1967). Zbl0153.05002MR221962
  51. J. Komlós, On the determinant of random matrices, Studia. Sci. Math. Hungar. 3, 387-399 (1968). Zbl0226.60048MR238371
  52. Kotani, S., Simon, B.: Localization in general one-dimensional random systems. II. Continuum Schrödinger operators. Comm. Math. Phys. 112, 103-119 (1987) Zbl0637.60080MR904140
  53. Leschke, H., Müller, P., Warzel, S.: A survey of rigorous results on random Schrödinger operators for amorphous solids. Markov Process. Related Fields 9, 729-760 (2003) Zbl1204.82025MR2072253
  54. Martinelli, F., Scoppola, E.: Introduction to the mathematical theory of Anderson localization. Riv. Nuovo Cimento 10, 1-90 (1987) MR924528
  55. McDonald, D.: A local limit theorem for large deviations of sums of independent, nonidentically distributed random variables. Ann. Probab. 7, 526–531 (1979). Zbl0421.60026MR528328
  56. Rogozin, B. A.: An Estimate for Concentration Functions, Theory Probab. Appl., 6, 94-97 (1961) Russian original: Teoriya Veroyatnost. i Prilozhen. 6 103–105 (1961). Zbl0106.34002MR131893
  57. Rogozin, B. A.: An integral-type estimate for concentration functions of sums of independent random variables Dokl. Akad. Nauk SSSR 211, 1067-1070 (1973) [in Russian]. Zbl0291.60025MR339320
  58. Rogozin, B. A.: Concentration function of a random variable. In Encyclopaedia of Mathematics, M. Hazewinkel (ed.), Springer 2002. 
  59. A. Slinko, A generalization of Komlós’s theorem on random matrices, New Zealand J. Math. 30 no. 1, 81-86 (2001). Zbl1016.15019
  60. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Zeit. 27, 544-548 (1928). Zbl54.0090.06MR1544925
  61. Stollmann, P.: Wegner estimates and localization for continuum Anderson models with some singular distributions. Arch. Math. (Basel) 75, 307-311 (2000) Zbl1068.82523MR1786177
  62. Stollmann, P.: Caught by disorder: bound states in random media. Boston: Birkhäusser, 2001. Zbl0983.82016MR1935594
  63. T. Tao, V. Vu, On Random ± 1 matrices: Singularity and Determinant, Random Structures and Algorithms 28, 1-23 (2006). Zbl1086.60008MR2187480
  64. T. Tao, V. Vu, On the singularity of random Bernoulli matrices, J. Amer. Math. Soc. 20, 603-628 (2007). Zbl1116.15021MR2291914

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.