Modèles fluides et modèles cinétiques en analyse numérique
Séminaire Équations aux dérivées partielles (Polytechnique) (1983-1984)
- page 1-15
Access Full Article
topHow to cite
topReferences
top- [1] A.A. Arsen'ev, Global existence of a weak solution of Vlasov's equation system of equations, Zh.Vychisl Mat. Mat. Fiz., 15 (1975) 136-147. Zbl0317.35032MR371322
- [2] C. Bardos & Degond, Global existence for the Vlasov-Poisson equations in 3 space variables with small initial data, Analyse non linéaire (à paraître). Zbl0593.35076
- [3] J.U. Brackbill& D.W. Forslund, An implicit method for electromagnetic plasma simulation in two dimensions. J. Comp. Physics46 (1982), 271-308. Zbl0489.76127MR672909
- [4] G.H. Cottet& P.A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson équations, SIAM J. Numer. Anal.1 (1984), 52-76. Zbl0549.65084MR731212
- [5] A. Harten, On a class of high resolution total variation stable finite difference schemes, SIAM J. Numer. Anal.1 (1984), 1-23. Zbl0547.65062MR731210
- [6] R.W. Hockney& J.W. Eastwood, Computer Simulation Using Particles, Mc Graw-Hill, New-York1981. Zbl0662.76002
- [7] A.B. Langdon, B.I. Cohen & A. Friedman, Direct implicit large time step particle simulation of plasmas, J. Comp. Physics51 (1983), 1983. Zbl0572.76123MR713943
- [8] R.J. Mason, Implicit moment particle simulation of plasmas, J. Comp. Physics41 (1981), 233-244. Zbl0469.76121MR626610
- [9] P.A. Raviart, An analysis of particle methods, Cours CIME: Numerical Methods in Fluids Dynamics, Como Juillet 1983 (à paraître aux Lecture Notes in Mathematics, Springer). Zbl0598.76003MR802214
- [10] Ukai& Okabe, On classical solutions in the large in time of the two-dimensional Vlasov's equation, Osaka, J. Math15 (1978), 245-261. Zbl0405.35002MR504289