Application of the microlocal theory of sheaves to the study of
Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)
- page 1-15
Access Full Article
topHow to cite
topKashiwara, M., and Schapira, P.. "Application of the microlocal theory of sheaves to the study of ${\mathcal {O}}_X$." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-15. <http://eudml.org/doc/111879>.
@article{Kashiwara1984-1985,
author = {Kashiwara, M., Schapira, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {differential complex; microlocalization; sheaf of holomorphic functions},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Application of the microlocal theory of sheaves to the study of $\{\mathcal \{O\}\}_X$},
url = {http://eudml.org/doc/111879},
year = {1984-1985},
}
TY - JOUR
AU - Kashiwara, M.
AU - Schapira, P.
TI - Application of the microlocal theory of sheaves to the study of ${\mathcal {O}}_X$
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
KW - differential complex; microlocalization; sheaf of holomorphic functions
UR - http://eudml.org/doc/111879
ER -
References
top- [1 ] Andreotti A., Grauert H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 193-259, (1962). Zbl0106.05501MR150342
- [2] Baouendi M.S., Chang C.H., Trèves F.: Microlocal hypo-analyticity and extension of C.R. functions. J. Diff. Geometry18, n°3, 331-391, (1983). Zbl0575.32019MR723811
- [3] Bengel G., Schapira P.: Décomposition microlocale analytique des distributions. Ann. Inst. Fourier, Grenoble, 29 n°3, 101-124, (1979). Zbl0396.46039MR552961
- [4] Hartshorne R.: Residues and duality. Lecture Notes in Math. 20, Springer-Verlag, (1966). Zbl0212.26101MR222093
- [5] Hörmander L.: An introduction to complex analysis in several variables, Van Norstrand, Princeton-LondonToronto (1966). Zbl0138.06203MR203075
- [6] Hörmander L.: Fourier integral operators. Acta Math.127, 79.183 (1971). Zbl0212.46601MR388463
- [7] Kashiwara M., Kawai T.: On the boundary value problem for elliptic systems of linear differential equations, I, II. Proc. Japan. Acad.48, 712-715, (1972) and 49, 164-168, (1973). Zbl0279.35037MR413200
- [8] Kashiwara M., Kawai T.: Some applications of boundary value problems for elliptic systems of linear differential equations. Ann. Math. Studies, 93, Princeton (1980). Zbl0454.46033MR560311
- [9] Kashiwara M., Schapira P.: Microlocal study of sheaves. Astérisque Soc. Math. France (1985) (to appear). cf. also: C.R. Acad. Sci.295, 487-490, (1982), Proc. Japan Acad.59, n°8, 349-351 and 352-354 (1983), or R.I.M.S. preprint n° 469 (1984), or Prepubl. Univ. Paris-Nord n°51 (1984). Zbl0548.58039
- [10] Kashiwara M., Schapira P.: A vanishing theorem for a class of systems with simple characteristics.To appear. Zbl0626.58028MR811552
- [11] Leray J.: Analyse Lagrangienne et mécanique quantique.Collège de France (1976-77). MR501198
- [12] Lewy H.: On the local character of the solution of an atypical differential equation in three variables and a related problem for regular functions of two complex variables. Ann. of Math.64, 514-522, (1956). Zbl0074.06204MR81952
- [13] Lion G., Vergne M.: The Weil representation, Maslov index, and theta series - progress in Math.6Birckhauser (1980). Zbl0444.22005MR573448
- [14] Malgrange B.: Faisceaux sur des variétés analytiques réelles. Bull. Soc. Math. France, 85, 231-237, (1957). Zbl0079.39201MR94831
- [15] Nacinovich M.: Poincaré's Lemma for tangential Cauchy-Riemann complexes. Preprint 41, Univ. di Pisa, (1983).
- [16] Naruki I.: Localization principle for differential complexes and its applications. Publ. R.I.M.S.Kyoto Univers. vol.8, 43-110 (1972). Zbl0246.35072MR321144
- [17] Sato M., Kashiwara M., Kawai T.: Hyperfunctions and pseudo-differential equations. Lecture Notes in Math. 287, 265-529, Springer Verlag, (1973). Zbl0277.46039MR420735
- [18] Schapira P.: Condition de positivité dans une variété symplectique complexe. Application à l'étude des microfonctions. Ann. Ec. Norm. Sup.14, 121-139, (1981). Zbl0473.58022MR618733
- [19] Sjöstrand J.: The F.B.I. transformation for C.R. submanifolds of Cn. Prepubl. Orsay (1982).
- [20] Tajima S.: Analyse microlocale des variétés de Cauchy-Riemann et problème du prolongement des solutions holomorphes des équations aux dérivées partielles. Publ. R.I.M.S., Kyoto Univ. Vol. 18,911-945 (1983). Zbl0553.58028MR688936
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.