Viscous profiles of vortex patches
Franck Sueur[1]
- [1] Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6 175 Rue du Chevaleret 75013 Paris France
Séminaire Équations aux dérivées partielles (2008-2009)
- Volume: 2008-2009, page 1-11
Access Full Article
topHow to cite
topSueur, Franck. "Viscous profiles of vortex patches." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-11. <http://eudml.org/doc/11188>.
@article{Sueur2008-2009,
affiliation = {Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6 175 Rue du Chevaleret 75013 Paris France},
author = {Sueur, Franck},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {self spreading; conormal singularities; viscous perturbations of the inviscid system},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Viscous profiles of vortex patches},
url = {http://eudml.org/doc/11188},
volume = {2008-2009},
year = {2008-2009},
}
TY - JOUR
AU - Sueur, Franck
TI - Viscous profiles of vortex patches
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 11
LA - eng
KW - self spreading; conormal singularities; viscous perturbations of the inviscid system
UR - http://eudml.org/doc/11188
ER -
References
top- S. Alinhac. Interaction d’ondes simples pour des équations complètement non-linéaires. Ann. Sci. École Norm. Sup. (4), 21(1):91–132, 1988. Zbl0665.35051MR944103
- M. S. Baouendi and C. Goulaouic. Cauchy problems with characteristic initial hypersurface. Comm. Pure Appl. Math., 26:455–475, 1973. Zbl0256.35050MR338532
- M. Beals. Self-spreading and strength of singularities for solutions to semilinear wave equations. Ann. of Math.,118(1):87–214, 1983. Zbl0522.35064MR707166
- J.-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4), 14(2):209–246, 1981. Zbl0495.35024MR631751
- T. F. Buttke. A fast adaptive vortex method for patches of constant vorticity in two dimensions. J. Comput. Phys., 89(1):161–186, 1990. Zbl0696.76029MR1063151
- J.-Y. Chemin. Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires. Duke Math. J., 56(3):431–469, 1988. Zbl0676.35009MR948529
- J.-Y. Chemin. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math., 103(3):599–629, 1991. Zbl0739.76010MR1091620
- J.-Y. Chemin. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4), 26(4):517–542, 1993. Zbl0779.76011MR1235440
- J.-Y. Chemin. Two-dimensional Euler system and the vortex patches problem. In Handbook of mathematical fluid dynamics. Vol. III, pages 83–160. North-Holland, Amsterdam, 2004. Zbl1221.76040MR2099034
- N. Depauw. Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. (9), 78(3):313–351, 1999. Zbl0927.76014MR1687165
- A. Dutrifoy. On 3-D vortex patches in bounded domains. Comm. Partial Differential Equations, 28(7-8):1237–1263, 2003. Zbl1030.76011MR1998937
- P. Gamblin and X. Saint Raymond. On three-dimensional vortex patches. Bull. Soc. Math. France, 123(3):375–424, 1995. Zbl0844.76013MR1373741
- L. Gårding. Hyperbolic equations in the twentieth century, Matériaux pour l’histoire des mathématiques au XX siècle (Nice, 1996), Sémin. Congr., 3:37–68, 1998. Zbl1044.01525MR1640255
- G. Grubb and L. Hörmander. The transmission property. Math. Scand., 67(2):273–289, 1990. Zbl0766.35088MR1096462
- L. Hörmander. The analysis of linear partial differential operators. I-IV. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Zbl1028.35001MR1996773
- C. Huang. Remarks on regularity of non-constant vortex patches. Commun. Appl. Anal., 3(4):449–459, 1999. Zbl0933.35120MR1706742
- C. Huang. Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J., 50(1):509–552, 2001. Zbl0993.35077MR1857044
- A. Majda. Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math., 39(S, suppl.):S187–S220, 1986. Frontiers of the mathematical sciences: 1985 (New York, 1985). Zbl0595.76021MR861488
- P. Serfati. Une preuve directe d’existence globale des vortex patches D. C. R. Acad. Sci. Paris Sér. I Math., 318(6):515–518, 1994. Zbl0803.76022MR1270072
- F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Preprint, available on arXiv.
- F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Journées “Équations aux Dérivées Partielles”, Evian 2008.
- V. I. Yudovich. Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. Fiz., 3:1032–1066, 1963. Zbl0147.44303MR158189
- N. J. Zabusky. Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys., 30(1):96–106, 1979. Zbl0405.76014MR524163
- P. Zhang and Q. J. Qiu. Propagation of higher-order regularities of the boundaries of -D vortex patches. Chinese Ann. Math. Ser. A, 18(3):381–390, 1997. Zbl0886.35119MR1475796
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.