Viscous profiles of vortex patches

Franck Sueur[1]

  • [1] Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6 175 Rue du Chevaleret 75013 Paris France

Séminaire Équations aux dérivées partielles (2008-2009)

  • Volume: 2008-2009, page 1-11

How to cite

top

Sueur, Franck. "Viscous profiles of vortex patches." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-11. <http://eudml.org/doc/11188>.

@article{Sueur2008-2009,
affiliation = {Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6 175 Rue du Chevaleret 75013 Paris France},
author = {Sueur, Franck},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {self spreading; conormal singularities; viscous perturbations of the inviscid system},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Viscous profiles of vortex patches},
url = {http://eudml.org/doc/11188},
volume = {2008-2009},
year = {2008-2009},
}

TY - JOUR
AU - Sueur, Franck
TI - Viscous profiles of vortex patches
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 11
LA - eng
KW - self spreading; conormal singularities; viscous perturbations of the inviscid system
UR - http://eudml.org/doc/11188
ER -

References

top
  1. S. Alinhac. Interaction d’ondes simples pour des équations complètement non-linéaires. Ann. Sci. École Norm. Sup. (4), 21(1):91–132, 1988. Zbl0665.35051MR944103
  2. M. S. Baouendi and C. Goulaouic. Cauchy problems with characteristic initial hypersurface. Comm. Pure Appl. Math., 26:455–475, 1973. Zbl0256.35050MR338532
  3. M. Beals. Self-spreading and strength of singularities for solutions to semilinear wave equations. Ann. of Math.,118(1):87–214, 1983. Zbl0522.35064MR707166
  4. J.-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4), 14(2):209–246, 1981. Zbl0495.35024MR631751
  5. T. F. Buttke. A fast adaptive vortex method for patches of constant vorticity in two dimensions. J. Comput. Phys., 89(1):161–186, 1990. Zbl0696.76029MR1063151
  6. J.-Y. Chemin. Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires. Duke Math. J., 56(3):431–469, 1988. Zbl0676.35009MR948529
  7. J.-Y. Chemin. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math., 103(3):599–629, 1991. Zbl0739.76010MR1091620
  8. J.-Y. Chemin. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4), 26(4):517–542, 1993. Zbl0779.76011MR1235440
  9. J.-Y. Chemin. Two-dimensional Euler system and the vortex patches problem. In Handbook of mathematical fluid dynamics. Vol. III, pages 83–160. North-Holland, Amsterdam, 2004. Zbl1221.76040MR2099034
  10. N. Depauw. Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. (9), 78(3):313–351, 1999. Zbl0927.76014MR1687165
  11. A. Dutrifoy. On 3-D vortex patches in bounded domains. Comm. Partial Differential Equations, 28(7-8):1237–1263, 2003. Zbl1030.76011MR1998937
  12. P. Gamblin and X. Saint Raymond. On three-dimensional vortex patches. Bull. Soc. Math. France, 123(3):375–424, 1995. Zbl0844.76013MR1373741
  13. L. Gårding. Hyperbolic equations in the twentieth century, Matériaux pour l’histoire des mathématiques au XX e siècle (Nice, 1996), Sémin. Congr., 3:37–68, 1998. Zbl1044.01525MR1640255
  14. G. Grubb and L. Hörmander. The transmission property. Math. Scand., 67(2):273–289, 1990. Zbl0766.35088MR1096462
  15. L. Hörmander. The analysis of linear partial differential operators. I-IV. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Zbl1028.35001MR1996773
  16. C. Huang. Remarks on regularity of non-constant vortex patches. Commun. Appl. Anal., 3(4):449–459, 1999. Zbl0933.35120MR1706742
  17. C. Huang. Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J., 50(1):509–552, 2001. Zbl0993.35077MR1857044
  18. A. Majda. Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math., 39(S, suppl.):S187–S220, 1986. Frontiers of the mathematical sciences: 1985 (New York, 1985). Zbl0595.76021MR861488
  19. P. Serfati. Une preuve directe d’existence globale des vortex patches 2 D. C. R. Acad. Sci. Paris Sér. I Math., 318(6):515–518, 1994. Zbl0803.76022MR1270072
  20. F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Preprint, available on arXiv. 
  21. F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Journées “Équations aux Dérivées Partielles”, Evian 2008. 
  22. V. I. Yudovich. Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. Fiz., 3:1032–1066, 1963. Zbl0147.44303MR158189
  23. N. J. Zabusky. Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys., 30(1):96–106, 1979. Zbl0405.76014MR524163
  24. P. Zhang and Q. J. Qiu. Propagation of higher-order regularities of the boundaries of 3 -D vortex patches. Chinese Ann. Math. Ser. A, 18(3):381–390, 1997. Zbl0886.35119MR1475796

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.