Vorticity internal transition layers for the Navier-Stokes equations

Franck Sueur[1]

  • [1] Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6; 175 Rue du Chevaleret 75013 Paris, FRANCE

Journées Équations aux dérivées partielles (2008)

  • page 1-15
  • ISSN: 0752-0360

Abstract

top
We deal with the incompressible Navier-Stokes equations, in two and three dimensions, when some vortex patches are prescribed as initial data i.e. when there is an internal boundary across which the vorticity is discontinuous. We show -thanks to an asymptotic expansion- that there is a sharp but smooth variation of the fluid vorticity into a internal layer moving with the flow of the Euler equations; as long as this later exists and as t < < 1 / ν , where ν is the viscosity coefficient.

How to cite

top

Sueur, Franck. "Vorticity internal transition layers for the Navier-Stokes equations." Journées Équations aux dérivées partielles (2008): 1-15. <http://eudml.org/doc/10640>.

@article{Sueur2008,
abstract = {We deal with the incompressible Navier-Stokes equations, in two and three dimensions, when some vortex patches are prescribed as initial data i.e. when there is an internal boundary across which the vorticity is discontinuous. We show -thanks to an asymptotic expansion- that there is a sharp but smooth variation of the fluid vorticity into a internal layer moving with the flow of the Euler equations; as long as this later exists and as $ t &lt;&lt; 1/\nu $, where $\nu $ is the viscosity coefficient.},
affiliation = {Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6; 175 Rue du Chevaleret 75013 Paris, FRANCE},
author = {Sueur, Franck},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Vorticity internal transition layers for the Navier-Stokes equations},
url = {http://eudml.org/doc/10640},
year = {2008},
}

TY - JOUR
AU - Sueur, Franck
TI - Vorticity internal transition layers for the Navier-Stokes equations
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 15
AB - We deal with the incompressible Navier-Stokes equations, in two and three dimensions, when some vortex patches are prescribed as initial data i.e. when there is an internal boundary across which the vorticity is discontinuous. We show -thanks to an asymptotic expansion- that there is a sharp but smooth variation of the fluid vorticity into a internal layer moving with the flow of the Euler equations; as long as this later exists and as $ t &lt;&lt; 1/\nu $, where $\nu $ is the viscosity coefficient.
LA - eng
UR - http://eudml.org/doc/10640
ER -

References

top
  1. P. Brenner. The Cauchy problem for symmetric hyperbolic systems in L p . Math. Scand., 19:27–37, 1966. Zbl0154.11304MR212427
  2. J.-Y. Chemin. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math., 103(3):599–629, 1991. Zbl0739.76010MR1091620
  3. J.-Y. Chemin. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4), 26(4):517–542, 1993. Zbl0779.76011MR1235440
  4. J.-Y. Chemin. Two-dimensional Euler system and the vortex patches problem. In Handbook of mathematical fluid dynamics. Vol. III, pages 83–160. North-Holland, Amsterdam, 2004. Zbl1221.76040MR2099034
  5. N. Depauw. Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. (9), 78(3):313–351, 1999. Zbl0927.76014MR1687165
  6. A. Dutrifoy. On 3-D vortex patches in bounded domains. Comm. Partial Differential Equations, 28(7-8):1237–1263, 2003. Zbl1030.76011MR1998937
  7. K. O. Friedrichs. The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc., 55:132–151, 1944. Zbl0061.26201MR9701
  8. P. Gamblin and X. Saint Raymond. On three-dimensional vortex patches. Bull. Soc. Math. France, 123(3):375–424, 1995. Zbl0844.76013MR1373741
  9. O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Navier-Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup. (4), 39(1):75–175, 2006. Zbl1173.35082MR2224659
  10. C. Huang. Remarks on regularity of non-constant vortex patches. Commun. Appl. Anal., 3(4):449–459, 1999. Zbl0933.35120MR1706742
  11. C. Huang. Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J., 50(1):509–552, 2001. Zbl0993.35077MR1857044
  12. A. Majda. Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math., 39(S, suppl.):S187–S220, 1986. Frontiers of the mathematical sciences: 1985 (New York, 1985). Zbl0595.76021MR861488
  13. W. Rankine. On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. Royal Soc. London, 160:277–288, 1870. 
  14. J. Rauch. Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc., 291(1):167–187, 1985. Zbl0549.35099MR797053
  15. P. Serfati. Une preuve directe d’existence globale des vortex patches 2 D. C. R. Acad. Sci. Paris Sér. I Math., 318(6):515–518, 1994. Zbl0803.76022MR1270072
  16. F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Preprint, available on arXiv. 
  17. P. Zhang and Q. J. Qiu. Propagation of higher-order regularities of the boundaries of 3 -D vortex patches. Chinese Ann. Math. Ser. A, 18(3):381–390, 1997. Zbl0886.35119MR1475796

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.