Formules de Lefschetz délocalisées

J. M. Bismut

Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)

  • page 1-12

How to cite

top

Bismut, J. M.. "Formules de Lefschetz délocalisées." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-12. <http://eudml.org/doc/111882>.

@article{Bismut1984-1985,
author = {Bismut, J. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Lefschetz formulas; heat equation method; Dirac operator; spin; bundles},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Formules de Lefschetz délocalisées},
url = {http://eudml.org/doc/111882},
year = {1984-1985},
}

TY - JOUR
AU - Bismut, J. M.
TI - Formules de Lefschetz délocalisées
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
KW - Lefschetz formulas; heat equation method; Dirac operator; spin; bundles
UR - http://eudml.org/doc/111882
ER -

References

top
  1. [1] M.F. Atiyah and R. Bott: A Lefschetz fixed point formula for elliptic complexes. I. Ann. of Math.86 (1967), 374-407.II 88 (1968), 451-491. Zbl0161.43201MR212836
  2. [2] M.F. Atiyah, R. Bott, and V.K. Patodi: On the heat equation and the index theorem. Invent. Math.19 (1973), 279-330. Zbl0257.58008MR650828
  3. [3] M.F. Atiyah, F. Hirzebruch: Spin-manifolds and group actions. In Essays in Topology and related topics. Dedicated to G.de Rham p18-28.A. Haefliger and R. Narasimhan ed.Berlin -Springer1970. Zbl0193.52401MR278334
  4. [4] M.F. Atiyah and I.M. Singer: The index of elliptic operators IIIAnn. of Math.87 (1968), 546-604. Zbl0164.24301MR236952
  5. [5] N. Berline, M. Vergne: Zéros d'un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. Journ50 (1983), 539-549. Zbl0515.58007MR705039
  6. [6] N. Berline, M. Vergne: Une démonstration simple de la formule de l'indice équivariant. A paraître. 
  7. [7] J.M. Bismut: The Atiyah-Singer Theorems: a probabilistic approach I. The index theorem. J. Funct. Anal.57 (1984), p.56-99II The Lefschetz fixed point formulas. Ibid.57 (1984), 329-348. Zbl0556.58027MR744920
  8. [8] J.M. Bismut: Index theorem and equivariant cohomology on the loop space. A paraître dansComm. Math. Physics (1984). Zbl0591.58027MR786574
  9. [9] J.M. Bismut: The infinitesimal Lefschetz formulas: A heat equation proof. A paraître dansJ. Funct. Anal. (1985). Zbl0572.58021MR794778
  10. [10] J.M. Bismut: Large deviations and the Malliavin calculus. Progress in Math. n°45: Birkhaüser1984. Zbl0537.35003MR755001
  11. [11] P. Gilkey: Lefschetz fixed point formulas and the heat equation. In " Partial differential equations and geometry".Park City Conf.1977 (C. Byrne ed.) Lecture Notes in Pure and Appl. Math. n°48, 91-147. Dekker: New-York1979. Zbl0405.58044MR535591
  12. [12] E. Witten: Supersymmetry and Morse theory. J. of Diff. Geom.17 (1982) 661-692. Zbl0499.53056MR683171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.