Formules de Lefschetz délocalisées
Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)
- page 1-12
Access Full Article
topHow to cite
topBismut, J. M.. "Formules de Lefschetz délocalisées." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-12. <http://eudml.org/doc/111882>.
@article{Bismut1984-1985,
author = {Bismut, J. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Lefschetz formulas; heat equation method; Dirac operator; spin; bundles},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Formules de Lefschetz délocalisées},
url = {http://eudml.org/doc/111882},
year = {1984-1985},
}
TY - JOUR
AU - Bismut, J. M.
TI - Formules de Lefschetz délocalisées
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
KW - Lefschetz formulas; heat equation method; Dirac operator; spin; bundles
UR - http://eudml.org/doc/111882
ER -
References
top- [1] M.F. Atiyah and R. Bott: A Lefschetz fixed point formula for elliptic complexes. I. Ann. of Math.86 (1967), 374-407.II 88 (1968), 451-491. Zbl0161.43201MR212836
- [2] M.F. Atiyah, R. Bott, and V.K. Patodi: On the heat equation and the index theorem. Invent. Math.19 (1973), 279-330. Zbl0257.58008MR650828
- [3] M.F. Atiyah, F. Hirzebruch: Spin-manifolds and group actions. In Essays in Topology and related topics. Dedicated to G.de Rham p18-28.A. Haefliger and R. Narasimhan ed.Berlin -Springer1970. Zbl0193.52401MR278334
- [4] M.F. Atiyah and I.M. Singer: The index of elliptic operators IIIAnn. of Math.87 (1968), 546-604. Zbl0164.24301MR236952
- [5] N. Berline, M. Vergne: Zéros d'un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. Journ50 (1983), 539-549. Zbl0515.58007MR705039
- [6] N. Berline, M. Vergne: Une démonstration simple de la formule de l'indice équivariant. A paraître.
- [7] J.M. Bismut: The Atiyah-Singer Theorems: a probabilistic approach I. The index theorem. J. Funct. Anal.57 (1984), p.56-99II The Lefschetz fixed point formulas. Ibid.57 (1984), 329-348. Zbl0556.58027MR744920
- [8] J.M. Bismut: Index theorem and equivariant cohomology on the loop space. A paraître dansComm. Math. Physics (1984). Zbl0591.58027MR786574
- [9] J.M. Bismut: The infinitesimal Lefschetz formulas: A heat equation proof. A paraître dansJ. Funct. Anal. (1985). Zbl0572.58021MR794778
- [10] J.M. Bismut: Large deviations and the Malliavin calculus. Progress in Math. n°45: Birkhaüser1984. Zbl0537.35003MR755001
- [11] P. Gilkey: Lefschetz fixed point formulas and the heat equation. In " Partial differential equations and geometry".Park City Conf.1977 (C. Byrne ed.) Lecture Notes in Pure and Appl. Math. n°48, 91-147. Dekker: New-York1979. Zbl0405.58044MR535591
- [12] E. Witten: Supersymmetry and Morse theory. J. of Diff. Geom.17 (1982) 661-692. Zbl0499.53056MR683171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.