Page 1 Next

Displaying 1 – 20 of 157

Showing per page

A geometric approach to on-diagonal heat kernel lower bounds on groups

Thierry Coulhon, Alexander Grigor'yan, Christophe Pittet (2001)

Annales de l’institut Fourier

We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product....

A logarithmic Sobolev form of the Li-Yau parabolic inequality.

Dominique Bakry, Michel Ledoux (2006)

Revista Matemática Iberoamericana

We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities...

A mean-value lemma and applications

Alessandro Savo (2001)

Bulletin de la Société Mathématique de France

We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write...

A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology.

J. I. Díaz, L. Tello (1999)

Collectanea Mathematica

We present some results on the mathematical treatment of a global two-dimensional diffusive climate model. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth. We prove the existence of bounded weak solutions via a fixed point argument. Although, the uniqueness of solutions may fail, in general, we give a...

A Riemann-Roch-Hirzebruch formula for traces of differential operators

Markus Engeli, Giovanni Felder (2008)

Annales scientifiques de l'École Normale Supérieure

Let D be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an n -dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of D as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology H H 2 n ( 𝒟 n , 𝒟 n * ) of the algebra of differential operators on a formal neighbourhood of a...

Analysis on Extended Heisenberg Group

B. Zegarliński (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we study Markov semigroups generated by Hörmander-Dunkl type operators on Heisenberg group.

Approximation of the Heaviside function and uniqueness results for a class of quasilinear elliptic-parabolic problems.

G. Gagneux, F. Guerfi (1990)

Revista Matemática de la Universidad Complutense de Madrid

In this paper, we concern ourselves with uniqueness results for an elliptic-parabolic quasilinear partial differential equation describing, for instance, the pressure of a fluid in a three-dimensional porous medium: within the frame of mathematical modeling of the secondary recovery from oil fields, the handling of the component conservation laws leads to a system including such a pressure equation, locally elliptic or parabolic according to the evolution of the gas phase.

Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles

Robert Berman, Johannes Sjöstrand (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.

Brownian motion with respect to time-changing riemannian metrics, applications to Ricci flow

Koléhè A. Coulibaly-Pasquier (2011)

Annales de l'I.H.P. Probabilités et statistiques

We generalize brownian motion on a riemannian manifold to the case of a family of metrics which depends on time. Such questions are natural for equations like the heat equation with respect to time dependent laplacians (inhomogeneous diffusions). In this paper we are in particular interested in the Ricci flow which provides an intrinsic family of time dependent metrics. We give a notion of parallel transport along this brownian motion, and establish a generalization of the Dohrn–Guerra or damped...

Currently displaying 1 – 20 of 157

Page 1 Next