Vers une théorie des points critiques à l'infini

A. Bahri; J. M. Coron

Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)

  • page 1-23

How to cite

top

Bahri, A., and Coron, J. M.. "Vers une théorie des points critiques à l'infini." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-23. <http://eudml.org/doc/111883>.

@article{Bahri1984-1985,
author = {Bahri, A., Coron, J. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Morse theory; contact form; non-compactness; Yamabe equation; Kazdan Warner problem; critical points at; infinity},
language = {fre},
pages = {1-23},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Vers une théorie des points critiques à l'infini},
url = {http://eudml.org/doc/111883},
year = {1984-1985},
}

TY - JOUR
AU - Bahri, A.
AU - Coron, J. M.
TI - Vers une théorie des points critiques à l'infini
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 23
LA - fre
KW - Morse theory; contact form; non-compactness; Yamabe equation; Kazdan Warner problem; critical points at; infinity
UR - http://eudml.org/doc/111883
ER -

References

top
  1. [1] J. Milnor, Morse Theory. Princeton University Press. Zbl0108.10401MR163331
  2. [3] T. Aubin, Métrique riemannienne et courbure. J. Diff. Geo.11 (1976) p.573-598. Zbl0371.46011
  3. [4] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature; à paraître . Zbl0576.53028
  4. [5] J. Kazdan - F. Warner, J. Diff. Geom.10 (1975) p.113-134. Zbl0296.53037MR365409
  5. [6] J.P. Bourguignon - J.P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, à paraître. Zbl0622.53023
  6. [7] J. Sacks - K. Uhlendeck, Annals of Maths.113 (1981) p.1-24. Zbl0462.58014MR604040
  7. [8] P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case. Riv. Ibero americana, à paraître. Zbl0704.49006
  8. [9] M. Struwe, A global existence result for elliptic boundary value problems involving limiting non linearities, à paraître. Zbl0535.35025
  9. [10] C.H. Taubes, Path connected Yang-Mills modulo-spacesJ. Diff. Geom. à paraître. Zbl0551.53040
  10. [11] H. Brezis - J.M. Coron, Convergence of solutions of H. systems or how to blow bubbles. Archive Rat. Mech. Anal. à paraître. Zbl0584.49024
  11. [12] A. Weinstein, On the Hypotheses of Rabinowitz periodic orbit theorems. J. Diff. Equ.331979 p.353-358. Zbl0388.58020MR543704
  12. [13] P.H. Rabinowitz, Periodic solutions of Hamiltonian systemsComm. Pure Math.311978 p.157-184. Zbl0358.70014MR467823
  13. [15] A Bahri, un problème variationnel non compact en géométrie de contact. Note aux C.R.A.S. t.299 Série 1. n°151984. Zbl0565.58018MR772088
  14. [16] R. Schoen - S.T. Yau, Positivity of the total mass of a general space-time. Phys. Rev. Lett.431979 n°20 p.1457-1459. MR547753
  15. [17] A. Bahri, Pseudo-orbites des formes de contact à paraître. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.