Elliptic equations with limiting Sobolev exponent: the impact of the Green's function

Olivier Rey

Banach Center Publications (1992)

  • Volume: 27, Issue: 2, page 383-397
  • ISSN: 0137-6934

How to cite

top

Rey, Olivier. "Elliptic equations with limiting Sobolev exponent: the impact of the Green's function." Banach Center Publications 27.2 (1992): 383-397. <http://eudml.org/doc/262572>.

@article{Rey1992,
author = {Rey, Olivier},
journal = {Banach Center Publications},
keywords = {critical exponent; Green's function; critical points at infinity},
language = {eng},
number = {2},
pages = {383-397},
title = {Elliptic equations with limiting Sobolev exponent: the impact of the Green's function},
url = {http://eudml.org/doc/262572},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Rey, Olivier
TI - Elliptic equations with limiting Sobolev exponent: the impact of the Green's function
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 383
EP - 397
LA - eng
KW - critical exponent; Green's function; critical points at infinity
UR - http://eudml.org/doc/262572
ER -

References

top
  1. [1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598. Zbl0371.46011
  2. [2] T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. Zbl0336.53033
  3. [3] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser. 182, Longman, 1989. Zbl0676.58021
  4. [4] A. Bahri et J. M. Coron, Vers une théorie des points critiques à l'infini, Séminaire EDP Ecole Polytechnique 1984-1985, n°8. 
  5. [5] A. Bahri et J. M. Coron, Sur une équation elliptique non linéaire avec l'exposant critique de Sobolev, C. R. Acad. Sci. Paris Sér. I 301 (1985), 345-348. Zbl0601.35040
  6. [6] A. Bahri et J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294. Zbl0649.35033
  7. [7] A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness. The topological effect of the critical points at infinity, to appear. Zbl0814.35032
  8. [8] H. Brézis and J. M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), 21-56. Zbl0584.49024
  9. [9] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. 
  10. [10] H. Brézis and L. A. Peletier, Asymptotics for elliptic equations involving the critical growth, in: Partial Differential Equations and the Calculus of Variations, F. Colombani and S. % Spagnolo (eds.), Birkhäuser, 1989. Zbl0685.35013
  11. [11] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I 299 (1984), 209-212. Zbl0569.35032
  12. [12] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (1988), 600-602. Zbl0646.35027
  13. [13] W. Y. Ding, On a conformally invariant elliptic equation on n , Comm. Math. Phys. 107 (1986), 331-335. 
  14. [14] W. Y. Ding, Positive solutions of u + u ( n + 2 ) / ( n - 2 ) = 0 on contractible domains, to appear. 
  15. [15] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, in: Nonlinear Partial Differential Equations in Engineering and Applied Science, Sternberg et al. (eds.), Dekker, New York 1980, 255-273. 
  16. [16] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in n , in: Mathematical Analysis and Applications, Part A, L. Nachbin (ed.), Academic Press, 1981, 370-402. 
  17. [17] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Poincaré Anal. Non Linéaire 8 (1991), 159-174. Zbl0729.35014
  18. [18] J. Kazdan, Prescribing the Curvature of a Riemannian Manifold, CBMS Regional Conf. Ser. in Math. 57, Amer. Math. Soc., 1985. Zbl0561.53048
  19. [19] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374. Zbl0527.42011
  20. [20] P. L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case. Parts 1 and 2, Ann. Inst. Poincaré Anal. Non Linéaire 1 (1984), 109-145 and 223-284. Zbl0541.49009
  21. [21] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1(1) (1985), 145-201, and 1(2) (1985), 45-121. Zbl0704.49005
  22. M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258. Zbl0236.53042
  23. [23] S. I. Pokhozhaev, Eigenfunctions of the equation ∆u + λf(u) = 0, Soviet Math. Dokl. 6 (1965), 1408-1411. Zbl0141.30202
  24. [24] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52. Zbl0786.35059
  25. [25] O. Rey, Sur un problème variationnel non compact: l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I 308 (1989), 349-352. Zbl0686.35047
  26. [26] O. Rey, The proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math. 65 (1989), 19-37. Zbl0708.35032
  27. [27] O. Rey, Blow-up points of solutions to elliptic equations with limiting non linearity, Differential and Integral Equations, to appear. 
  28. [28] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495. Zbl0576.53028
  29. [29] R. Schoen, in preparation. 
  30. [30] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), 511-517. Zbl0535.35025
  31. [31] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. Zbl0353.46018
  32. [32] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274. Zbl0159.23801
  33. [33] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.