Elliptic equations with limiting Sobolev exponent: the impact of the Green's function
Banach Center Publications (1992)
- Volume: 27, Issue: 2, page 383-397
- ISSN: 0137-6934
Access Full Article
topHow to cite
topRey, Olivier. "Elliptic equations with limiting Sobolev exponent: the impact of the Green's function." Banach Center Publications 27.2 (1992): 383-397. <http://eudml.org/doc/262572>.
@article{Rey1992,
author = {Rey, Olivier},
journal = {Banach Center Publications},
keywords = {critical exponent; Green's function; critical points at infinity},
language = {eng},
number = {2},
pages = {383-397},
title = {Elliptic equations with limiting Sobolev exponent: the impact of the Green's function},
url = {http://eudml.org/doc/262572},
volume = {27},
year = {1992},
}
TY - JOUR
AU - Rey, Olivier
TI - Elliptic equations with limiting Sobolev exponent: the impact of the Green's function
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 383
EP - 397
LA - eng
KW - critical exponent; Green's function; critical points at infinity
UR - http://eudml.org/doc/262572
ER -
References
top- [1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598. Zbl0371.46011
- [2] T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. Zbl0336.53033
- [3] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser. 182, Longman, 1989. Zbl0676.58021
- [4] A. Bahri et J. M. Coron, Vers une théorie des points critiques à l'infini, Séminaire EDP Ecole Polytechnique 1984-1985, n°8.
- [5] A. Bahri et J. M. Coron, Sur une équation elliptique non linéaire avec l'exposant critique de Sobolev, C. R. Acad. Sci. Paris Sér. I 301 (1985), 345-348. Zbl0601.35040
- [6] A. Bahri et J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294. Zbl0649.35033
- [7] A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness. The topological effect of the critical points at infinity, to appear. Zbl0814.35032
- [8] H. Brézis and J. M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), 21-56. Zbl0584.49024
- [9] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [10] H. Brézis and L. A. Peletier, Asymptotics for elliptic equations involving the critical growth, in: Partial Differential Equations and the Calculus of Variations, F. Colombani and S. % Spagnolo (eds.), Birkhäuser, 1989. Zbl0685.35013
- [11] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I 299 (1984), 209-212. Zbl0569.35032
- [12] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (1988), 600-602. Zbl0646.35027
- [13] W. Y. Ding, On a conformally invariant elliptic equation on , Comm. Math. Phys. 107 (1986), 331-335.
- [14] W. Y. Ding, Positive solutions of on contractible domains, to appear.
- [15] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, in: Nonlinear Partial Differential Equations in Engineering and Applied Science, Sternberg et al. (eds.), Dekker, New York 1980, 255-273.
- [16] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in , in: Mathematical Analysis and Applications, Part A, L. Nachbin (ed.), Academic Press, 1981, 370-402.
- [17] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Poincaré Anal. Non Linéaire 8 (1991), 159-174. Zbl0729.35014
- [18] J. Kazdan, Prescribing the Curvature of a Riemannian Manifold, CBMS Regional Conf. Ser. in Math. 57, Amer. Math. Soc., 1985. Zbl0561.53048
- [19] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374. Zbl0527.42011
- [20] P. L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case. Parts 1 and 2, Ann. Inst. Poincaré Anal. Non Linéaire 1 (1984), 109-145 and 223-284. Zbl0541.49009
- [21] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1(1) (1985), 145-201, and 1(2) (1985), 45-121. Zbl0704.49005
- M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258. Zbl0236.53042
- [23] S. I. Pokhozhaev, Eigenfunctions of the equation ∆u + λf(u) = 0, Soviet Math. Dokl. 6 (1965), 1408-1411. Zbl0141.30202
- [24] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52. Zbl0786.35059
- [25] O. Rey, Sur un problème variationnel non compact: l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I 308 (1989), 349-352. Zbl0686.35047
- [26] O. Rey, The proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math. 65 (1989), 19-37. Zbl0708.35032
- [27] O. Rey, Blow-up points of solutions to elliptic equations with limiting non linearity, Differential and Integral Equations, to appear.
- [28] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495. Zbl0576.53028
- [29] R. Schoen, in preparation.
- [30] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), 511-517. Zbl0535.35025
- [31] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. Zbl0353.46018
- [32] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274. Zbl0159.23801
- [33] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.