On the singularities of harmonic maps from a domain in R 3 into S 2

J. M. Coron

Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)

  • page 1-15

How to cite

top

Coron, J. M.. "On the singularities of harmonic maps from a domain in $R^3$ into $S^2$." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-15. <http://eudml.org/doc/111910>.

@article{Coron1986-1987,
author = {Coron, J. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {harmonic maps; singularity; energy minimizing maps},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {On the singularities of harmonic maps from a domain in $R^3$ into $S^2$},
url = {http://eudml.org/doc/111910},
year = {1986-1987},
}

TY - JOUR
AU - Coron, J. M.
TI - On the singularities of harmonic maps from a domain in $R^3$ into $S^2$
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
KW - harmonic maps; singularity; energy minimizing maps
UR - http://eudml.org/doc/111910
ER -

References

top
  1. [1] A. Baldes, Stability and uniqueness properties of the equator map from a ball into an ellipsoid, Math. Z.185, (1984), 505 - 516. Zbl0513.58021MR733770
  2. [2] F. Bethuel - X. Zheng, Sur la densité des fonctions régulières entre deux variétés dans des espaces de Sobolev, C. R. Acad Sci. Paris t. 303, I, (1986), 447 - 449, and Density of smooth functions between two manifolds in Sobolev spaces, to appear. Zbl0595.46036MR865857
  3. [3] G. Birkhoff, Très observaciones sobre el algebra lineal, Univ. Nac. Tucuman RevistaA. 5, (1946), 147 -151. Math. Rev.8 -561, (1947). Zbl0060.07906MR20547
  4. [4] H. Brézis - J.M. Coron - E.H. Lieb, Harmonie maps with defects, Comm. Math. Phys, 107, (1986), 649 - 705. Zbl0608.58016MR868739
  5. [5] R. Cohen - R. Hardt - D. Kinderlehrer - S.Y. Lin - M. Luskin, Minimum energy configurations for liquid crystals: computational results, Proceeding I.M.A. Workshop on the Theory and Applications of Liquid Crystals, to appear. MR900831
  6. [6] M. Giaquinta - E. Giusti, The singular set of the minima of certain quadratic functionals, Ann. Sc. Norm. Sup. Pisa, ser. IV, 11 (1984), 45 -55. Zbl0543.49018MR752579
  7. [7] R. Gulliver - B. White, The rate of convergence of a harmonic map at a singular point, to appear. Zbl0645.58018MR990588
  8. [8] Y.O. Hamidoune - M. Las Vergnas, Local edge-connectivity in regular bipartite graphs, to appear. Zbl0662.05042MR941445
  9. [9] R. Hardt- D. Kinderlehrer - F.H. Lin, in preparation 
  10. [10] J. Jost - M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann.262, (1983), 549-561 Zbl0488.49004MR696525
  11. [11] L.V. Kantorovich, on the transfer of masses, Dokl. Akad. Nauk SSSR37, (1942), 227 -229. 
  12. [12] L. Lemaire, Applications harmoniques de surfaces riemanniennes, J. Diff. Geom.13, (1978), 51 -78. Zbl0388.58003MR520601
  13. [13] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom.17, (1982), 307 -335. Zbl0521.58021MR664498
  14. [14] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom.18, (1983), 253 - 268. Zbl0547.58020MR710054
  15. [15] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Math.118, (1983), 525 - 571. Zbl0549.35071MR727703

NotesEmbed ?

top

You must be logged in to post comments.