On the singularities of harmonic maps from a domain in R 3 into S 2

J. M. Coron

Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)

  • page 1-15

How to cite

top

Coron, J. M.. "On the singularities of harmonic maps from a domain in $R^3$ into $S^2$." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-15. <http://eudml.org/doc/111910>.

@article{Coron1986-1987,
author = {Coron, J. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {harmonic maps; singularity; energy minimizing maps},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {On the singularities of harmonic maps from a domain in $R^3$ into $S^2$},
url = {http://eudml.org/doc/111910},
year = {1986-1987},
}

TY - JOUR
AU - Coron, J. M.
TI - On the singularities of harmonic maps from a domain in $R^3$ into $S^2$
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
KW - harmonic maps; singularity; energy minimizing maps
UR - http://eudml.org/doc/111910
ER -

References

top
  1. [1] A. Baldes, Stability and uniqueness properties of the equator map from a ball into an ellipsoid, Math. Z.185, (1984), 505 - 516. Zbl0513.58021MR733770
  2. [2] F. Bethuel - X. Zheng, Sur la densité des fonctions régulières entre deux variétés dans des espaces de Sobolev, C. R. Acad Sci. Paris t. 303, I, (1986), 447 - 449, and Density of smooth functions between two manifolds in Sobolev spaces, to appear. Zbl0595.46036MR865857
  3. [3] G. Birkhoff, Très observaciones sobre el algebra lineal, Univ. Nac. Tucuman RevistaA. 5, (1946), 147 -151. Math. Rev.8 -561, (1947). Zbl0060.07906MR20547
  4. [4] H. Brézis - J.M. Coron - E.H. Lieb, Harmonie maps with defects, Comm. Math. Phys, 107, (1986), 649 - 705. Zbl0608.58016MR868739
  5. [5] R. Cohen - R. Hardt - D. Kinderlehrer - S.Y. Lin - M. Luskin, Minimum energy configurations for liquid crystals: computational results, Proceeding I.M.A. Workshop on the Theory and Applications of Liquid Crystals, to appear. MR900831
  6. [6] M. Giaquinta - E. Giusti, The singular set of the minima of certain quadratic functionals, Ann. Sc. Norm. Sup. Pisa, ser. IV, 11 (1984), 45 -55. Zbl0543.49018MR752579
  7. [7] R. Gulliver - B. White, The rate of convergence of a harmonic map at a singular point, to appear. Zbl0645.58018MR990588
  8. [8] Y.O. Hamidoune - M. Las Vergnas, Local edge-connectivity in regular bipartite graphs, to appear. Zbl0662.05042MR941445
  9. [9] R. Hardt- D. Kinderlehrer - F.H. Lin, in preparation 
  10. [10] J. Jost - M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann.262, (1983), 549-561 Zbl0488.49004MR696525
  11. [11] L.V. Kantorovich, on the transfer of masses, Dokl. Akad. Nauk SSSR37, (1942), 227 -229. 
  12. [12] L. Lemaire, Applications harmoniques de surfaces riemanniennes, J. Diff. Geom.13, (1978), 51 -78. Zbl0388.58003MR520601
  13. [13] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom.17, (1982), 307 -335. Zbl0521.58021MR664498
  14. [14] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom.18, (1983), 253 - 268. Zbl0547.58020MR710054
  15. [15] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Math.118, (1983), 525 - 571. Zbl0549.35071MR727703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.