Existence d'ondes de raréfaction pour des écoulements isentropiques
Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)
- page 1-16
Access Full Article
topHow to cite
topAlinhac, S.. "Existence d'ondes de raréfaction pour des écoulements isentropiques." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-16. <http://eudml.org/doc/111914>.
@article{Alinhac1986-1987,
author = {Alinhac, S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {local Cauchy problem; quasilinear; rarefaction wave; discontinuous data; Nash-Moser technique},
language = {fre},
pages = {1-16},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Existence d'ondes de raréfaction pour des écoulements isentropiques},
url = {http://eudml.org/doc/111914},
year = {1986-1987},
}
TY - JOUR
AU - Alinhac, S.
TI - Existence d'ondes de raréfaction pour des écoulements isentropiques
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 16
LA - fre
KW - local Cauchy problem; quasilinear; rarefaction wave; discontinuous data; Nash-Moser technique
UR - http://eudml.org/doc/111914
ER -
References
top- [0] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes hyperboliques quasi-linéaires, article à paraître.
- [1] S. Alinhac, Paracomposition et opérateurs paradifférentielsComm. in PDE11 (1), (1986), 87-121. Zbl0596.47023MR814548
- [2] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ecole Normale Sup., 4ème série, 14, 1981, 209-246. Zbl0495.35024MR631751
- [3] Chen Shu-Xing, Existence of local solution to supersonic flow around three dimensional wing, preprint.
- [4] R. Courant et K.O. Friedrichs, Supersonic flow and Shock wavesSpringer-Verlag, New-York, 1949. Zbl0041.11302MR421279
- [5] R.S. Hamilton, The inverse function theorem of Nash and MoserBull. of the Amer. Math. Soc., 7 (1), 1982. Zbl0499.58003MR656198
- [6] L. Hörmander, The analysis of linear partial differential operators, Springer-Verlag (1986). Zbl0601.35001
- [7] L. Hörmander, The boundary problems of physical geodesy, Arch. Rat. Mech. and Anal.62 (1976), 1-52. Zbl0331.35020MR602181
- [8] S. Klainerman et A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.34 (1981), 481-524. Zbl0476.76068MR615627
- [9] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure. Appl. Math.10 (1957), 537-567. Zbl0081.08803MR93653
- [10] S. Lojasiewicz et E. Zehnder, An inverse function theorem in Fréchet spaces, J. Funct. Analysis33 (1979), 165-174. Zbl0431.46032MR546504
- [11] A. Majda, "The stability of multi dimensional shock fronts" and "The existence of multi dimensional shock fronts", Memoirs of the Amer. Math. Soc.275 et 281 (1983). Zbl0506.76075
- [12] A. Majda, Compressible Fluid-Flow and Systems of Conservation Laws in several space variables, Applied Math. Sc., Springer-Verlag (1984). Zbl0537.76001MR748308
- [13] A. Majda and S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math.28 (1975), 607-676. Zbl0314.35061MR410107
- [14] G. Metivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace. A paraîtreTrans. Amer. Math. Soc. (1987). Zbl0619.35075
- [15] G. Metivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, à paraîtreDuke Math J. (1987). Zbl0631.35056MR874678
- [16] Y. Meyer, Remarques sur un théorème de J.M. Bony, Supplemento al rendiconti der circolo mat. di Palermo atti del seminario di analisi armonica, série II (1), (1981). Zbl0473.35021MR639462
- [17] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse de 3ème cycle, Rennes, 1987.
- [18] J. Moser, A rapidly convergent iteration method and non linear differential equations, Ann. Scu. Norm. Sup. Pisa (3) 20, 1966, 265-315. Zbl0144.18202MR199523
- [19] L. Nirenberg, On elliptic partial differential equationsAnn. Scuola Norm. Sup. Pisa, 3, 13 (1959), 116-162. Zbl0088.07601MR109940
- [20] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. of the Amer. Math. Soc.291 (1), 1985, 167-187. Zbl0549.35099MR797053
- [21] J. Rauch and M. Reed, Striated solutions to semilinear, two speed wave equations, Ind. Univ. Math. J34 (1985), p.337-353. Zbl0559.35053MR783919
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.