Existence d'ondes de raréfaction pour des écoulements isentropiques

S. Alinhac

Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)

  • page 1-16

How to cite

top

Alinhac, S.. "Existence d'ondes de raréfaction pour des écoulements isentropiques." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-16. <http://eudml.org/doc/111914>.

@article{Alinhac1986-1987,
author = {Alinhac, S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {local Cauchy problem; quasilinear; rarefaction wave; discontinuous data; Nash-Moser technique},
language = {fre},
pages = {1-16},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Existence d'ondes de raréfaction pour des écoulements isentropiques},
url = {http://eudml.org/doc/111914},
year = {1986-1987},
}

TY - JOUR
AU - Alinhac, S.
TI - Existence d'ondes de raréfaction pour des écoulements isentropiques
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 16
LA - fre
KW - local Cauchy problem; quasilinear; rarefaction wave; discontinuous data; Nash-Moser technique
UR - http://eudml.org/doc/111914
ER -

References

top
  1. [0] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes hyperboliques quasi-linéaires, article à paraître. 
  2. [1] S. Alinhac, Paracomposition et opérateurs paradifférentielsComm. in PDE11 (1), (1986), 87-121. Zbl0596.47023MR814548
  3. [2] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ecole Normale Sup., 4ème série, 14, 1981, 209-246. Zbl0495.35024MR631751
  4. [3] Chen Shu-Xing, Existence of local solution to supersonic flow around three dimensional wing, preprint. 
  5. [4] R. Courant et K.O. Friedrichs, Supersonic flow and Shock wavesSpringer-Verlag, New-York, 1949. Zbl0041.11302MR421279
  6. [5] R.S. Hamilton, The inverse function theorem of Nash and MoserBull. of the Amer. Math. Soc., 7 (1), 1982. Zbl0499.58003MR656198
  7. [6] L. Hörmander, The analysis of linear partial differential operators, Springer-Verlag (1986). Zbl0601.35001
  8. [7] L. Hörmander, The boundary problems of physical geodesy, Arch. Rat. Mech. and Anal.62 (1976), 1-52. Zbl0331.35020MR602181
  9. [8] S. Klainerman et A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.34 (1981), 481-524. Zbl0476.76068MR615627
  10. [9] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure. Appl. Math.10 (1957), 537-567. Zbl0081.08803MR93653
  11. [10] S. Lojasiewicz et E. Zehnder, An inverse function theorem in Fréchet spaces, J. Funct. Analysis33 (1979), 165-174. Zbl0431.46032MR546504
  12. [11] A. Majda, "The stability of multi dimensional shock fronts" and "The existence of multi dimensional shock fronts", Memoirs of the Amer. Math. Soc.275 et 281 (1983). Zbl0506.76075
  13. [12] A. Majda, Compressible Fluid-Flow and Systems of Conservation Laws in several space variables, Applied Math. Sc., Springer-Verlag (1984). Zbl0537.76001MR748308
  14. [13] A. Majda and S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math.28 (1975), 607-676. Zbl0314.35061MR410107
  15. [14] G. Metivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace. A paraîtreTrans. Amer. Math. Soc. (1987). Zbl0619.35075
  16. [15] G. Metivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, à paraîtreDuke Math J. (1987). Zbl0631.35056MR874678
  17. [16] Y. Meyer, Remarques sur un théorème de J.M. Bony, Supplemento al rendiconti der circolo mat. di Palermo atti del seminario di analisi armonica, série II (1), (1981). Zbl0473.35021MR639462
  18. [17] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse de 3ème cycle, Rennes, 1987. 
  19. [18] J. Moser, A rapidly convergent iteration method and non linear differential equations, Ann. Scu. Norm. Sup. Pisa (3) 20, 1966, 265-315. Zbl0144.18202MR199523
  20. [19] L. Nirenberg, On elliptic partial differential equationsAnn. Scuola Norm. Sup. Pisa, 3, 13 (1959), 116-162. Zbl0088.07601MR109940
  21. [20] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. of the Amer. Math. Soc.291 (1), 1985, 167-187. Zbl0549.35099MR797053
  22. [21] J. Rauch and M. Reed, Striated solutions to semilinear, two speed wave equations, Ind. Univ. Math. J34 (1985), p.337-353. Zbl0559.35053MR783919

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.