A rapidly convergent iteration method and non-linear partial differential equations - I

Jürgen Moser

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1966)

  • Volume: 20, Issue: 2, page 265-315
  • ISSN: 0391-173X

How to cite


Moser, Jürgen. "A rapidly convergent iteration method and non-linear partial differential equations - I." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1966): 265-315. <http://eudml.org/doc/83381>.

author = {Moser, Jürgen},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {numerical analysis},
language = {eng},
number = {2},
pages = {265-315},
publisher = {Scuola normale superiore},
title = {A rapidly convergent iteration method and non-linear partial differential equations - I},
url = {http://eudml.org/doc/83381},
volume = {20},
year = {1966},

AU - Moser, Jürgen
TI - A rapidly convergent iteration method and non-linear partial differential equations - I
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1966
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 265
EP - 315
LA - eng
KW - numerical analysis
UR - http://eudml.org/doc/83381
ER -


  1. 1 J. Schauder, Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Order in beliebiger Anzahl von unabhängigen Veränderlichen. Fund. Math.24, 1935, pp. 213-246. Zbl0011.35202JFM61.0541.02
  2. 2 K.O. Friedrichs, Symmetric Hyperbolic Linear Differential Equation8. Comm. Pure Appl. Math.7, 1954, pp. 345-392. Zbl0059.08902MR62932
  3. 3 J. Nash, The Imbedding of Riemannian Manifolds, Ann. Math.63, 1956, pp. 20-63. Zbl0070.38603MR75639
  4. 4 J. Schwartz, On Nash's 'Implicit Function Theorem, Comm Pure Appl. Math, 13, 1960, pp. 509-530. Zbl0178.51002MR114144
  5. 4' J. Mosfr, A New Technique for the Construction of Solutions of Nonlinear Differential Equations. Proc. Nat. Acad. Sciences, Vol. 47, No. 11, pp. 1824-1831, 1961. Zbl0104.30503MR132859
  6. 4" J. Moser, On Invariant Curves of Area-Preserving Mappings of an Annulus. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl.IIa, No. 1, 1962, pp. 1-20. Zbl0107.29301MR147741
  7. 5 C.L. Siegel, Iteration of Analytic Functions. Ann. of Math.43, 1942, pp. 607-612. Zbl0061.14904MR7044
  8. 5' C.L. Siegel, Über die Normalform Analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl, IIa, 1952, pp. 21-30. Zbl0047.32901MR57407
  9. 6 A.N. Kolmogorov, Doklad. Nauk, USSR98, 1954, p. 527-530. Zbl0056.31502
  10. 7 A.N. Kolmogorov, General Theory of Dynamical Systems and Classical Mechanics. Proc. of Intl. Congress of Math., Amsterdam, 1954, (Amsterdam: Erven P. Nordhoff, 1957), Vol. 1, pp. 315-333. Zbl0095.17103
  11. 8 V.I. Arnold, «Small divisors » I, On mappings of a circle onto itself, Isvest. Akad. Nauk, ser. mat., 25, No. 1, 1961, pp. 21-86. MR140699
  12. 9 V.I. Arnold, Small Divisor and Stability Problems in Classical ana Celestial Mechanics. Uspekhi Mat. Nauk USSR, Vol. 18, Ser. 6 (119), 1963, pp. 81-192. MR170705
  13. 10 V.I. Arnold, Proof of A N. Kolmogorov's Theorem on the Preservation of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian. Uspekhi Mat. N. USSR, Vol. 18, Ser. 5 (113), 1963, pp 13-40. Zbl0129.16606MR163025
  14. 11 K.O. Friedrichs, Symmetric Positive Linear Differential Equations, Comm. Pure Appl. Math.11, 1458, pp. 333-418. Zbl0083.31802MR100718
  15. 12 N.N. Bogolioubov, and Y.A. Mitropolski, The Method of Integral Manifolds in Nonliriear Mechanics, Contrib. to Differential Equations, Vol. II, 1963, pp. 123-196. Zbl0137.28406
  16. 13 S.P. Diliberto, Perturbation Theorems for Periodic Surfaces. I, Rend. del Circ. Mat. Palermo (2), 9, 1961, pp. 265-299II, Rend. del Circ. Mat. Palermo (2), 10, 1962, pp. 111-161. Zbl0109.31401MR142853
  17. 13' S.P. Diliberto, Pertubation Theory of Invariant Surfaces I-IV. Mimeographed ONR Reports, Berkeley, 1956/57. 
  18. 14 Kyner, W.T., Invariant manifolds, Rend. del Circolo Matematico Palermo, Ser. II, Vol. 9, 1961, pp. 98-110. Zbl0104.06303MR149038
  19. 14' J.K. Hale, Integral Manifolds of Perturbed Differential Systems, Annals of Math., 73, 1961, pp. 496-531. Zbl0163.32804MR123786
  20. 15 I. Kupka, Stabilité des varietés invariants d'un champ de vecteurs voui- les petites perturbations. Compt. Rend. Acad. Sc. Paris, 258, Group 1, 1964, pp. 4197-4200. Zbl0117.05403MR162036
  21. 16 L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Ser. 3, 13 (1959), pp. 116-162. Zbl0088.07601MR109940
  22. 17 Gagliardo, E., Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 8, 1959, pp. 24-51. Zbl0199.44701MR109295
  23. 18 J.J. Kohn and L. Nirenberg, Non-coercive boundary value problems, to appear in Comm. Pure Appl. Math. (See under « elliptic regalarization »). Zbl0125.33302MR181815
  24. 19 W.T. Kyner, A fixed point theorem. Contributions to the Theory on Nonlinear Oscillation, Vol. 3, Princeton University Press, Annals of Math. Studies36, 1956, pp. 197-205. Zbl0073.33501MR81472
  25. 20 W.T. Kyner, Small Periodic Perturbations of an Autonomous System of Vector Equations. Contributions to the Theory of Nonlinear Oscillations Vol. 4, Princeton, 1958. Zbl0082.30103MR101946
  26. 21 R. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, NYU Report, IMM-NYLT 333, Oct. 1964, to be published in Comm. Pure Appl. Math. 
  27. 22 C.L. Siegel, Vorlesungen über, Himmelsmechanik, Springer, 1956. Zbl0070.45403MR80009
  28. 23 H. Cremer, über die Häufigkeit der Nichtzentren, Math. Ann.115, pp. 607-611, 1942. Zbl61.0331.03JFM64.0289.02
  29. 24 N. Levinson, Transformation of an analytic function of several variables to a canonical form. Duke Math. Journal28, 1961, pp. 345-353. (See Theorem 2). Zbl0100.29002MR145101
  30. 25 N.I. Achieser, Vorlesungen über Approximationstheorie, Akd. Verlag. Berlin1953, translated from Russian, Chapter V. Zbl0052.29002MR61692

Citations in EuDML Documents

  1. M. S. Baouendi, C. Goulaouic, Problèmes de Cauchy singuliers non linéaires
  2. Walter Craig, A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations
  3. Rossella Agliardi, Cauchy problem for some semilinear evolution equations
  4. Albert J. Milani, Hans Volkmer, Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations
  5. Petronije S. Milojević, Solvability of semilinear equations with strong nonlinearities and applications to elliptic boundary value problems
  6. Hana Petzeltová, Milan Štědrý, Time-periodic solutions of telegraph equations in n spatial variables
  7. Michal Fečkan, A certain type of partial differential equations on tori
  8. S. Alinhac, Existence d'ondes de raréfaction pour des écoulements isentropiques
  9. Sidney Webster, On the proof of Kuranishi's embedding theorem
  10. Paul H. Rabinowitz, A rapid convergence method for a singular perturbation problem

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.