Analyse semi-classique pour l'équation de Harper

B. Helffer; J. Sjöstrand

Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)

  • page 1-12

How to cite

top

Helffer, B., and Sjöstrand, J.. "Analyse semi-classique pour l'équation de Harper." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-12. <http://eudml.org/doc/111915>.

@article{Helffer1986-1987,
author = {Helffer, B., Sjöstrand, J.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {spectrum; Harper's equations; semi-classical analysis},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Analyse semi-classique pour l'équation de Harper},
url = {http://eudml.org/doc/111915},
year = {1986-1987},
}

TY - JOUR
AU - Helffer, B.
AU - Sjöstrand, J.
TI - Analyse semi-classique pour l'équation de Harper
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
KW - spectrum; Harper's equations; semi-classical analysis
UR - http://eudml.org/doc/111915
ER -

References

top
  1. I.S. Aubry, C. André, Proc.Israel Phys.Soc.,ed.C.G.Kuper 3(Adam Hilger, Bristol, 1979), 133-. 
  2. 2 M. Ya. Az bel, Energy spectrum or a conduction electron in a magnetic field, Zh. Eksp. Teor. Fiz.46,(1964),939-, Sov. Phys. JETP19,(1964),634-. 
  3. 3 J. Bellisard, B., Simon, Cantor spectrum for the almost Mathieu equation, J. Funct.Anal.,48(3),408-419. Zbl0516.47018MR678179
  4. 4 U. Carlsson, Travail en préparation. 
  5. 5 B. Helffer,D,Robert, Puits de potentiel généralisés et asymptotique semi-classique, Ann. de l'IHP,41(3)(1984),291-331. Zbl0565.35082MR776281
  6. 6 B. Helffer, J., Sjöstrand, Multiple wells in the semi-classical limit I. Comm. in PDE, 9(4)(1984),337-408. Zbl0546.35053MR740094
  7. 7 B. Helffer, J. Sjöstrand, Puits mulptiples.,II,Intéraction moléculaire, symétries, perturbation. Ann. de l'IHP,42(2)(1985),127-212. Zbl0595.35031MR798695
  8. 8 B. Helffer, J. Sjöstrand, Effet tunnel pour l'équation de Schrôdinger avec champ magnétique. Préprint de l'Ecole Polytechnique,Déc.1986. Zbl0699.35205
  9. 9 D.R. Hofstadter,Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, 14(6), 15Sept. 1976. 
  10. 10 B. Simon, Almost periodic Schrödinger operators. A review, Adv.Appl.Math. 3,(1982),463-490. Zbl0545.34023MR682631
  11. 11 J. Sokoloff, Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials, Physics reports (Review section of Physics letters), 126(4)(1985), 189-244. 
  12. 12 M. Wilkinson, Critical properties of electron eigenstates in incommensurate systems, Proc.R.Soc.Lond., A391,(1984),305-350. MR739684
  13. 13 M. Wilkinson, An example of phase holonomy in WKB theory, J. Phys. A, 17(1984),3459-3476. MR772333
  14. 14 M. Wilkinson, Von Neumann lattices of Wannier functions for Bloch electrons in a magnetic field, Proc. R. Soc. Lond., A403,(1986),135-166. MR828687
  15. 15 M. Wilkinson, An exact renormalisation group for Bloch electrons in a magnetic field, J. Phys. A., à paraître. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.