Perturbation stochastique de processus de rafle
- [1] Université Paris-Sud XI 91405 Orsay France
Séminaire Équations aux dérivées partielles (2008-2009)
- Volume: 2008-2009, page 1-13
Access Full Article
topAbstract
topHow to cite
topBernicot, Frédéric. "Perturbation stochastique de processus de rafle." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-13. <http://eudml.org/doc/11192>.
@article{Bernicot2008-2009,
abstract = {Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.},
affiliation = {Université Paris-Sud XI 91405 Orsay France},
author = {Bernicot, Frédéric},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Perturbation stochastique de processus de rafle},
url = {http://eudml.org/doc/11192},
volume = {2008-2009},
year = {2008-2009},
}
TY - JOUR
AU - Bernicot, Frédéric
TI - Perturbation stochastique de processus de rafle
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 13
AB - Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.
LA - fre
UR - http://eudml.org/doc/11192
ER -
References
top- H. Benabdellah. Existence of solutions to the nonconvex sweeping process. J. Diff. Equations, 164 :286–295, 2000. Zbl0957.34061MR1765576
- A. Bensoussan and J.L. Lions. Contrôl impulsionnel et inéquations quasi-variationnelles. Dunod., 1982. Zbl0491.93002MR673169
- F. Bernard, L. Thibault, and N. Zlateva. Characterizations of Prox-regular sets in uniformly convex Banach spaces. J. Convex Anal., 13 :525–560, 2006. Zbl1121.49014MR2291551
- F. Bernard, L. Thibault, and N. Zlateva. Prox-regular sets and epigraphs in uniformly convex Banach spaces : various regularities and other properties. submitted, 2008. Zbl1216.49015
- F. Bernicot and J. Venel. Stochastic perturbation of sweeping process. Preprint, 2009. Zbl1226.34014
- F. Bernicot and J. Venel. Differential inclusions with proximal normal cones in Banach spaces. J. Convex Anal., 2010. Zbl1204.34083
- M. Bounkhel and L. Thibault. Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal., 6 :359–374, 2001. Zbl1086.49016MR2159846
- C. Castaing, T.X. Dúc Hā, and M. Valadier. Evolution equations governed by the sweeping process. Set-Valued Anal., 1 :109–139, 1993. Zbl0813.34018MR1239400
- C. Castaing and M.D.P. Monteiro Marques. periodic solutions of an evolution problem associated with continuous moving convex sets. Set-Valued Anal., 3(4) :381–399, 1995. Zbl0845.35142MR1372875
- F.H. Clarke, R.J. Stern, and P.R. Wolenski. Proximal smoothness and the lower- property. J. Convex Anal., 2 :117–144, 1995. Zbl0881.49008MR1363364
- G. Colombo and V.V. Goncharov. The sweeping processes without convexity. Set-Valued Anal., 7 :357–374, 1999. Zbl0957.34060MR1756914
- G. Colombo and M.D.P. Monteiro Marques. Sweeping by a continuous prox-regular set. J. Diff. Equations, 187(1) :46–62, 2003. Zbl1029.34052MR1946545
- J.F. Edmond and L. Thibault. Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program, Ser. B, 104(2-3) :347–373, 2005. Zbl1124.49010MR2179241
- J.F. Edmond and L. Thibault. solutions of nonconvex sweeping process differential inclusion with perturbation. J. Diff. Equations, 226(1) :135–179, 2006. Zbl1110.34038MR2232433
- H. Federer. Curvature measures. Trans. Amer. Math. Soc., 93 :418–491, 1959. Zbl0089.38402MR110078
- N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North. Holland, Amsterdam, 1981. Zbl0495.60005MR1011252
- N. El Karoui. Processus de reflexion sur . Séminaire de probabilités IX, Lect. notes in Math., 465, 1975. Zbl0325.60044MR423554
- P.L. Lions and A.S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Comm. on Pures and Appl. Math., 37 :511–527, 1984. Zbl0598.60060MR745330
- B. Maury and J. Venel. A discrete contact model for crowd motion. submitted, http ://arxiv.org/abs/0901.0984, 2008. Zbl1168.34333MR2473301
- B. Maury and J. Venel. A microscopic model of crowd motion. C.R. Acad. Sci. Paris Ser.I, 346 :1245–1250, 2008. Zbl1168.34333MR2473301
- J.J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equations, 26(3) :347–374, 1977. Zbl0356.34067MR508661
- R.A. Poliquin, R.T. Rockafellar, and L.Thibault. Local differentiability of distance functions. Trans. Amer. Math. Soc., 352 :5231–5249, 2000. Zbl0960.49018MR1694378
- Y. Saisho. Stochastic differential equations for multi-dimensional domain with reflecting boundary. Prob. Theory and Rel. Fields, 74(3) :455–477, 1987. Zbl0591.60049MR873889
- A.V. Skorohod. Stochastic equations for diffusion processes in a bounded region 1. Theor. Veroyatnost. i Primenen, 6 :264–274, 1961. Zbl0215.53501MR145598
- A.V. Skorohod. Stochastic equations for diffusion processes in a bounded region 2. Theor. Veroyatnost. i Primenen, 7 :3–23, 1962. Zbl0201.49302MR153047
- D.W. Stroock and S.R.S. Varadhan. Diffusion processes with boundary conditions. Comm. Pures Appl. Math., 24 :147–225, 1971. Zbl0227.76131MR277037
- H. Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J., 9 :163–177, 1979. Zbl0423.60055MR529332
- L. Thibault. Sweeping process with regular and nonregular sets. J. Differential Equations, 193(1) :1–26, 2003. Zbl1037.34007MR1994056
- M. Valadier. Quelques problèmes d’entraînement unilatéral en dimension finie. Séminaire d’Analyse Convexe, 18(8) :Univ. Sci. Tech. Languedoc, Montpellier, 1988. Zbl0672.49014MR1003006
- J. Venel. Modélisation mathématique et numérique de mouvements de foule. PhD thesis, Université Paris-Sud, 2008. available at http ://tel.archives-ouvertes.fr/tel-00346035/fr.
- J. Venel. A numerical scheme for a first order differential inclusion. submitted, http ://arxiv.org/abs/0904.2694, 2009.
- S. Watanabe. On stochastic differential equations for multidimensional diffusion processes with boundary conditions. J. Math. Kyoto. Univ., 11 :155–167,553–563, 1971. Zbl0236.60037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.