Opérateurs de Schrödinger avec champ magnétique

B. Helffer

Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)

  • page 1-14

How to cite

top

Helffer, B.. "Opérateurs de Schrödinger avec champ magnétique." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-14. <http://eudml.org/doc/111932>.

@article{Helffer1986-1987,
author = {Helffer, B.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger operators; magnetic field; spectral theory; resolvent; first eigenvalue; multiplicity of eigenvalues},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Opérateurs de Schrödinger avec champ magnétique},
url = {http://eudml.org/doc/111932},
year = {1986-1987},
}

TY - JOUR
AU - Helffer, B.
TI - Opérateurs de Schrödinger avec champ magnétique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
KW - Schrödinger operators; magnetic field; spectral theory; resolvent; first eigenvalue; multiplicity of eigenvalues
UR - http://eudml.org/doc/111932
ER -

References

top
  1. [AH-BO] Y. Aharonov - D. Bohm: Significance of Electromagnetic Potentials in the Quantum theoryThe Physical review vol.115 n°3, Aug 1959. Zbl0099.43102MR110458
  2. [AL-BA] S. Alinhac - M.S. Baouendi: Uniqueness for the characteristic cauchy problem and strong unique continuation for higher order partial differential inequalitiesAmer. J. of Math. Vol. 102 n°1 p.179-217. Zbl0425.35098MR556891
  3. [AR] N. Aronszajn: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36 (1957) pp.235-249. Zbl0084.30402MR92067
  4. [AV-HE-SI] J. Avron - I. Herbst - B. Simon: Schrödinger operators with magnetic fields: [1] General interactions. Duke Math. Journal Vol.45 n°4 Dec.78 Zbl0399.35029MR518109
  5. [2] Separation of Center of Mass in Homogeneous Magnetic fields.Annals of Physics114 p.431-451 (1978). Zbl0409.35027MR507741
  6. [3] Atoms in Homogeneous Magnetic fieldsComm. Math. Phys.79 p.529-572 (1981). Zbl0464.35086MR623966
  7. [AV-SE] J. Avron - R. Seiler: Paramagnetism for non relativistic Electrons and Euclidian Massless Dirac Particles. Phys. Rev. Letters Vol.42 April 1979 n°15 p.931-934. 
  8. [AV-SI] J.E. Avron - B. Simon: A counter example to the paramagnetic conjecturePhysics letters Vol.75 A n°1,2 (24 Déc. 1979). 
  9. [BE] M. Berry: Journal of Physics serie A (19) (1986) p.2281. Zbl0623.58044MR852496
  10. [C-S-S] J.M. Combes - R. Schrader - R. Seiler: Classical bounds and limits for Energy Distributions of Hamilton operators in Electromagnetic fieldsAnnals of Physics111 p.1-18 (1978). MR489509
  11. [CO] H. Cordes: "Uber die Bestimmtheit der Lösungen elliptischer Differential gleichungen durch Anfangs vorgaben";Nachr. Akad. Wiss.GöttingenII (1956) pp.230-258. Zbl0074.08002
  12. [HA] E.M. Harrell: The band structure of a one dimensional, periodic system in the scaling limit. Ann. Physics119 (1979) p.351-369. Zbl0412.34013MR539149
  13. [HE-MO] B. Helffer - A. Mohamed: Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique. Manuscrit. Zbl0638.47047
  14. [HE-NO] B. Helffer - J. Nourrigat: Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Progress in Mathematics Vol.58, Birkhäuser, Boston (1985). Zbl0568.35003MR897103
  15. [HE-SJ] B. Helffer - J. Sjostrand: [1] Multiple wells in the semi-classical limit I;Comm. in P.D.E.,9 (4) (1984) p.337-408. Zbl0546.35053MR740094
  16. [2] Multiple wells in the semi-classical limit II; Annales de l'I.H.P., vol.42, n°2 (1985) p.127-212. MR798695
  17. [3] Effet tunnel pour l'équation de Schrödinger avec champ magnétique Preprint de l'Ecole Polytechnique Déc.86. 
  18. [HO-SCH-SE] H. Hogreve - R. Schrader - R. Seiler: A conjecture on the spinor functional determinant;Nuclear Phys. B142 (1978) p525. MR509972
  19. [HU] W. Hunziker: Schrödinger Operators with Electric or Magnetic fields Proc. Int. Conf. in Math. Phys., Lausanne (1980) Lect. Notes in Physics n°116. Zbl0471.47010MR582602
  20. [IV] A. Iwatsuka: Magnetic Schrödinger Operators with compact resolventJ. Math. Kyoto Univ.26-3 (1986) p.357-374. Zbl0637.35026MR857223
  21. [JLMS] G. Jona-Lasinio - F. Martinelli et E. Scoppola: New approach in the semi-classical limit of Quantum Mechanics I- Multiple tunneling in one dimension;comm. in Math. Phys.80 (1981) p.223-254. Zbl0483.60094MR623159
  22. [KA] T. Kato: Israël J. of Math.13 (1972) p.125-174. Zbl0246.35025MR333833
  23. [KO] J.J. Kohn: "Lectures on degenerate elliptic problems" CIME1977 p.91-149. Zbl0448.35046MR660652
  24. [LA-LI] Landau - Lifschitz: Mécanique quantique. 
  25. [LA-O'CA] R. Lavine - O'Caroll: Ground state properties and lower bounds of Energy levels of a particle in a uniform magnetic field and external potential;J. of Math. Phys.18 (1977) p.1908-1912. MR456039
  26. [MO] A. Mohamed: Quelques remarques sur le spectre de Schrödinger avec un champ magnétique. Manuscrit. 
  27. [O-P] S. Olariu - I. Iovitzu Popescu: The quantum effects of electromagnetic fluxes;Review of Modern Physics Vol 57 n°2 (1985). 
  28. [OU] A. Outassourt: Effet tunnel pour les opérateurs de Schrödinger à potentiel périodique. Séminaire de l'Université de Nantes (84-85) et à paraître au Journal of Functional Analysis87. 
  29. [PE] M. Peshkin: 1981Phys. Rev. A23360; Aharonov-Bohm effect in Bound states: Theoretical and experimental states. 
  30. [SI] B. Simon: [1]Semi-classical Analysis of low lying Eigenvalues III width of the ground state band in strongly coupled solids. Ann. of Physics158 (1984) p.415-420. Zbl0596.35028MR772619
  31. [2] Semi-classical Analysis of low lying Eigenvalues IV;The flea of the elephant. J. of Functional Analysis Vol.63 n°1 (1985) p.123-136. Zbl0652.35090MR795520
  32. [V-W] C. Von Westenholz: Differential forms in Mathematical Physics; North Holland. Zbl0391.58001MR641034
  33. [WA] X.P. Wang: Effet tunnel pour l'opérateur de Dirac; Ann. I.H.P. Vol.43, n°3 (1985) p.269-319. + Addendum n°4. Zbl0614.35074
  34. [WU-YA] Tai Tsun Wu - Chen Ning Yang: Concept of non integrable factors and global formulation of gauge fields. Phys. Rev. D Vol.12, n°12 Déc.1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.