The propagation of singularities for pseudo-differential operators with self-tangential characteristics

N. Dencker

Séminaire Équations aux dérivées partielles (Polytechnique) (1987-1988)

  • page 1-14

How to cite

top

Dencker, N.. "The propagation of singularities for pseudo-differential operators with self-tangential characteristics." Séminaire Équations aux dérivées partielles (Polytechnique) (1987-1988): 1-14. <http://eudml.org/doc/111936>.

@article{Dencker1987-1988,
author = {Dencker, N.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {singularities; characteristics; Levi condition},
language = {eng},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {The propagation of singularities for pseudo-differential operators with self-tangential characteristics},
url = {http://eudml.org/doc/111936},
year = {1987-1988},
}

TY - JOUR
AU - Dencker, N.
TI - The propagation of singularities for pseudo-differential operators with self-tangential characteristics
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1987-1988
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - eng
KW - singularities; characteristics; Levi condition
UR - http://eudml.org/doc/111936
ER -

References

top
  1. 1 S. Alinhac, A class of hyperbolic operators with double involutive characteristics of Fuchsian type, Comm. Partial Differential Equations3 (1978), 877-905. Zbl0389.35049MR507121
  2. 2 J. Chazarain, Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résolubilité locale, Ann. Inst. Fourier (Grenoble) 24 (1974), 203-223. Zbl0274.35007MR390513
  3. 3 N. Dencker, On the propagation of polarization sets for systems of real principal type, J. Funct. Anal.46 (1982), 351-372. Zbl0487.58028MR661876
  4. 4 L. Hörmander, The Weyl calculus of pseudo-dimentional operators, Comm. Pure Appl. Math.32 (1979), 359-443. Zbl0388.47032MR517939
  5. 5, "The Analysis of Linear Partial Differential Operators I-IV", Springer Verlag, Berlin, 1985. 
  6. 6 V. Ja. Ivrii, Wave fronts of solutions of symmetric pseudodifferential systems, Sibirsk. Mat. Ž.20 (1979), 557-578. (Russian, english translation in Sibirian Math. J.20 (1979), 390-405) Zbl0453.35091MR537362
  7. 7, Wave fronts of solutions of certain hyperbolic pseudodifferential equations, Trudy Moskov. Mat. Obsc.39 (1979), 83-112. (Russian, english translation in Trans. Moscow Math. Soc.1981:1, 87-119) Zbl0461.35089MR544942
  8. 8 H. Kumano-go and K. Taniguchi, Fourier integral operators of multi-phase and the fundamental solution for a hyperbolic system, Funkcial Ekvac.22 (1979), 161-196. Zbl0568.35092MR556576
  9. 9 R. Lascar, Propagation des singularités pour une classe d'opérateurs pseudo-différentiels à caracteristiques de multiplicité variable, C. R. Acad. Sci. Paris Sér. A283 (1976), 341-343. Zbl0358.58012MR426064
  10. 10 R.B. Melrose and G.A. Uhlmann, Microlocal structure of involutive conical refraction, Duke Math. J.46 (1979), 571-582. Zbl0422.58026MR544247
  11. 11 Y. Morimoto, Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations4 (1979), 609-643. Zbl0447.35052MR532579
  12. 12 J.C. Nosmas, Parametrix du problème de Cauchy pour une classe de systèmes hyperboliques symétrisables à caracteristiques involutives de multiplicité variable, Comm. Partial Differential Equations5 (1980), 1-22. Zbl0437.35045MR556452
  13. 13 G.A. Uhlmann, Pseudo- differential operators with involutive double characteristics, Comm. Partial Differential Equations2 (1977), 713-779. Zbl0389.35047MR493009
  14. 14, Parametrices for operators with multiple involutive characteristics, Comm. Partial Differential Equations4 (1979), 739-767. Zbl0429.35075MR535066
  15. 15 S. Wakabayashi, Singularities of solutions of the Cauchy problems for operators with nearly constant coefficient hyperbolic principal part, Comm. Partial Differential Equations8 (1983), 347-406. Zbl0532.35047MR693646
  16. 16, Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems, Comm. Partial Differential Equations9 (1984), 1147-1177. Zbl0575.35054MR761799

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.