Einstein-Euler equations for matter spacetimes with Gowdy symmetry

Philippe G. LeFloch[1]

  • [1] Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique Université Pierre et Marie Curie (Paris 6) 4 Place Jussieu 75252 Paris France

Séminaire Équations aux dérivées partielles (2008-2009)

  • Volume: 2008-2009, page 1-15

Abstract

top
We investigate the initial value problem for the Einstein-Euler equations of general relativity under the assumption of Gowdy symmetry on T 3 . Given an arbitrary initial data set, we establish the existence of a globally hyperbolic future development and we provide a global foliation of this spacetime in terms of a geometrically defined time-function coinciding with the area of the orbits of the symmetry group. This allows us to construct matter spacetimes with weak regularity which admit, both, impulsive gravitational waves and shock waves. The cosmic censorhip conjecture is established in the polarized case.

How to cite

top

LeFloch, Philippe G.. "Einstein-Euler equations for matter spacetimes with Gowdy symmetry." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-15. <http://eudml.org/doc/11196>.

@article{LeFloch2008-2009,
abstract = {We investigate the initial value problem for the Einstein-Euler equations of general relativity under the assumption of Gowdy symmetry on $T^3$. Given an arbitrary initial data set, we establish the existence of a globally hyperbolic future development and we provide a global foliation of this spacetime in terms of a geometrically defined time-function coinciding with the area of the orbits of the symmetry group. This allows us to construct matter spacetimes with weak regularity which admit, both, impulsive gravitational waves and shock waves. The cosmic censorhip conjecture is established in the polarized case.},
affiliation = {Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique Université Pierre et Marie Curie (Paris 6) 4 Place Jussieu 75252 Paris France},
author = {LeFloch, Philippe G.},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {general relativity; Gowdy symmetry; Einstein-Euler equations; perfect fluid; impulsive gravitational wave; shock wave},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Einstein-Euler equations for matter spacetimes with Gowdy symmetry},
url = {http://eudml.org/doc/11196},
volume = {2008-2009},
year = {2008-2009},
}

TY - JOUR
AU - LeFloch, Philippe G.
TI - Einstein-Euler equations for matter spacetimes with Gowdy symmetry
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 15
AB - We investigate the initial value problem for the Einstein-Euler equations of general relativity under the assumption of Gowdy symmetry on $T^3$. Given an arbitrary initial data set, we establish the existence of a globally hyperbolic future development and we provide a global foliation of this spacetime in terms of a geometrically defined time-function coinciding with the area of the orbits of the symmetry group. This allows us to construct matter spacetimes with weak regularity which admit, both, impulsive gravitational waves and shock waves. The cosmic censorhip conjecture is established in the polarized case.
LA - eng
KW - general relativity; Gowdy symmetry; Einstein-Euler equations; perfect fluid; impulsive gravitational wave; shock wave
UR - http://eudml.org/doc/11196
ER -

References

top
  1. Andréasson H., Global foliations of matter spacetimes with Gowdy symmetry, Commun. Math. Phys. 206 (1999), 337–366. Zbl0949.83009MR1722133
  2. Andréasson H., Rendall A.D., and Weaver M., Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter, Comm. Partial Differential Equations 29 (2004), 237–262. Zbl1063.35145MR2038152
  3. Barnes A.P., LeFloch P.G., Schmidt B.G., and Stewart J.M., The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes, Class. Quantum Grav. 21 (2004), 5043–5074. Zbl1080.83011MR2103241
  4. Berger B.K., Chruściel P., Isenberg J., and Moncrief V., Global foliations of vacuum spacetimes with T 2 isometry, Ann. Phys. 260 (1997), 117–148. Zbl0929.58013MR1474313
  5. Berger B.K., Chruściel P., and Moncrief V., On asymptotically flat spacetimes with G 2 -invariant Cauchy surfaces, Ann. Phys. 237 (1995), 322–354. Zbl0967.83507MR1314228
  6. Choquet-Bruhat Y., Théorème d’existence pour certains systèmes d’équations aux dérivées partielles nonlinéaires, Acta Math. 88 (1952), 141Ð-225. Zbl0049.19201MR53338
  7. Choquet-Bruhat Y.,General relativity and the Einstein equations, Oxford Univ. Press, 2009. Zbl1157.83002MR2473363
  8. Choquet-Bruhat Y. and Geroch R., Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14 (1969), 329Ð-335. Zbl0182.59901MR250640
  9. Christodoulou D. and Klainerman S.,The global nonlinear stability of the Minkowski space, Princeton Univ. Press, 1993. Zbl0827.53055MR1316662
  10. Chruściel P., On spacetimes with U ( 1 ) × U ( 1 ) symmetric compact Cauchy surfaces, Ann. Phys. 202 (1990), 100–150. Zbl0727.53078MR1067565
  11. Chruściel P., Isenberg J., and Moncrief V., Strong cosmic censorship in polarized Gowdy spacetimes, Class. Quantum Grav. 7 (1990), 1671–1680. Zbl0703.53081MR1075858
  12. Dafermos M. and Rendall A.D., Strong cosmic censorship for T 2 -symmetric cosmological spacetimes with collisionless matter, Preprint gr-qc/0610075. 
  13. Eardley D. and Moncrief V., The global existence problem and cosmic censorship in general relativity, Gen. Relat. Grav. 13 (1981), 887–892. MR640355
  14. Gowdy R., Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions, Ann. Phys. 83 (1974), 203–241. Zbl0325.53061MR339764
  15. Hawking S.W. and Penrose R., The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. A314 (1970), 529–548. Zbl0954.83012MR264959
  16. Isenberg J. and Moncrief V., Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes, Ann. Phys. 99 (1990), 84–122. Zbl0723.53061MR1048674
  17. Isenberg J. and Weaver M., On the area of the symmetry orbits in T 2 symmetric spacetimes, Class. Quantum Grav. 20 (2003), 3783–3796. Zbl1049.83004MR2001695
  18. LeFloch P.G. and Mardare C., Definition and weak stability of spacetimes with distributional curvature, Port. Math. 64 (2007), 535–573. Zbl1144.35311MR2374400
  19. LeFloch P.G. and Rendall A., Stability and global foliation of matter spacetimes on T 3 with gravitational waves and shock waves, in preparation. 
  20. LeFloch P.G. and Stewart J.M., Shock waves and gravitational waves in matter spacetimes with Gowdy symmetry, Port. Math. 62 (2005), 349–370. MR2171679
  21. LeFloch P.G. and Stewart J.M., Causal structure of plane symmetric spacetimes with self-gravitating relativistic fluids, in preparation. 
  22. Moncrief V., Global properties of Gowdy spacetimes with T 3 × R topology, Ann. Phys. 132 (1981), 87–107. MR615961
  23. Penrose R., Gravitational collapse and spacetime singularities, Phys. Rev. Lett. 14 (1965), 57–59. Zbl0125.21206MR172678
  24. Rendall A.D., Cosmic censorship and the Vlasov equation, Class. Quantum Grav. 9 (1992), 99–104. MR1178792
  25. Rendall A.D., Crushing singularities in spacetimes with spherical, plane, and hyperbolic symmetry, Class. Quantum Grav. 12 (1995), 1517–1533. Zbl0823.53072MR1344287
  26. Ringström H., Curvature blow-up on a dense subset of the singularity in T 3 -Gowdy, J. Hyperbolic Differ. Equ. 2 (2005), 547–564. Zbl1177.83027MR2151121
  27. Ringström H., Strong cosmic censorship in T 3 -Gowdy spacetimes, Ann. Math., to appear. Zbl1206.83115
  28. Tegankong D., Noutchegueme N., and Rendall A.D., Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry, J. Hyperbolic Differ. Equ. 1 (2004), 691–724. Zbl1072.35190MR2111579

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.