L’équation de Szegö cubique

Patrick Gérard[1]; Sandrine Grellier[2]

  • [1] Université Paris-Sud Laboratoire de Mathématiques d’Orsay CNRS, UMR 8628 France
  • [2] MAPMO-UMR 6628 Département de Mathématiques Université d’Orleans 45067 Orléans Cedex 2 France

Séminaire Équations aux dérivées partielles (2008-2009)

  • page 1-19

How to cite


Gérard, Patrick, and Grellier, Sandrine. "L’équation de Szegö cubique." Séminaire Équations aux dérivées partielles (2008-2009): 1-19. <http://eudml.org/doc/11198>.

affiliation = {Université Paris-Sud Laboratoire de Mathématiques d’Orsay CNRS, UMR 8628 France; MAPMO-UMR 6628 Département de Mathématiques Université d’Orleans 45067 Orléans Cedex 2 France},
author = {Gérard, Patrick, Grellier, Sandrine},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {L’équation de Szegö cubique},
url = {http://eudml.org/doc/11198},
year = {2008-2009},

AU - Gérard, Patrick
AU - Grellier, Sandrine
TI - L’équation de Szegö cubique
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 19
LA - fre
UR - http://eudml.org/doc/11198
ER -


  1. Bahouri, H., Gérard, P., Xu, C.J. : Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, Journal d’Analyse Mathématique, 82, 93-118 (2000). Zbl0965.22010MR1799659
  2. Birnir, B., Kenig, C., Ponce, G., Svansted, N., Vega, L. : On the ill-posedness of the IVP for the generalized KdV and nonlinear Schrödinger equation. J. London Math. Soc. 53, 551-559 (1996). Zbl0855.35112MR1396718
  3. Bourgain, J. : Refinements of Strichartz’ inequality and applications to 2D NLS with critical nonlinearity, IMRN, 5, 253-283 (1998). Zbl0917.35126MR1616917
  4. Brezis, H., Gallouët, T. : Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677-681 (1980). Zbl0451.35023MR582536
  5. Burq, N., Gérard, P., Tzvetkov, N. : An instability property of the nonlinear Schrödinger equation on S d . Math. Res. Lett., 9, 323–335 (2002). Zbl1003.35113MR1909648
  6. Burq, N., Gérard, P., Tzvetkov, N. : Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. math. 159, 187-223 (2005) Zbl1092.35099MR2142336
  7. Burq, N., Gérard, P., Tzvetkov, N. : Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Scient. Éc. Norm. Sup. 38, 255-301 (2005). Zbl1116.35109MR2144988
  8. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T., : Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation, preprint, 2008, arXiv : 08081742v2 [math.AP]. 
  9. Gérard, P. : Nonlinear Schrödinger equations in inhomogeneous media : wellposednes and illposedness results. Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, European Mathematical Society. Zbl1106.35096MR2275675
  10. Kappeler, T., Pöschel, J. : KdV & KAM, A Series of Modern Surveys in Mathematics, vol. 45, Springer-Verlag, 2003. MR1997070
  11. Kuksin, S. B. : Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000. Zbl0960.35001MR1857574
  12. Lax, P. : Integrals of Nonlinear equations of Evolution and Solitary Waves, Comm. Pure and Applied Math. 21, 467-490 (1968). Zbl0162.41103MR235310
  13. Lax, P. : Periodic solutions of the the KdV equation. Comm. Pure Appl. Math. 28 , 141–188 (1975). Zbl0295.35004MR369963
  14. Nikolski, N. K. : Operators, functions, and systems : an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. Zbl1007.47001MR1864396
  15. Ogawa, T. : A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14, 765–769 (1990). Zbl0715.35073MR1049119
  16. Peller, V. V. : Hankel operators and their applications. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003. Zbl1030.47002MR1949210
  17. Rudin, W. : Real and Complex Analysis, Mac Graw Hill, Second edition, 1980. Zbl0925.00005MR662565
  18. Tzvetkov, N. : A la frontière entre EDP semi et quasi linéaires, Mémoire d’habilitation à diriger les recherches, Université Paris-Sud, Orsay, 2003. 
  19. Vladimirov, M. V. : On the solvability of a mixed problem for a nonlinear equation of Schrödinger type. Sov. math. Dokl. 29, 281-284 (1984). Zbl0585.35019MR745511
  20. Weinstein, M. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 567–576 (1982/83). Zbl0527.35023MR691044
  21. Weinstein, M. : Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39 , 51–67 (1986). Zbl0594.35005MR820338
  22. Yudovich, V. I. : Non-stationary flows of an ideal incompressible fluid. (Russian) Z. Vycisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963). Zbl0147.44303MR158189
  23. Zakharov, V. E., Shabat, A. B. : Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP 34 (1972), no. 1, 62–69. MR406174

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.