L’équation de Szegö cubique
Patrick Gérard[1]; Sandrine Grellier[2]
- [1] Université Paris-Sud Laboratoire de Mathématiques d’Orsay CNRS, UMR 8628 France
- [2] MAPMO-UMR 6628 Département de Mathématiques Université d’Orleans 45067 Orléans Cedex 2 France
Séminaire Équations aux dérivées partielles (2008-2009)
- page 1-19
Access Full Article
topHow to cite
topGérard, Patrick, and Grellier, Sandrine. "L’équation de Szegö cubique." Séminaire Équations aux dérivées partielles (2008-2009): 1-19. <http://eudml.org/doc/11198>.
@article{Gérard2008-2009,
affiliation = {Université Paris-Sud Laboratoire de Mathématiques d’Orsay CNRS, UMR 8628 France; MAPMO-UMR 6628 Département de Mathématiques Université d’Orleans 45067 Orléans Cedex 2 France},
author = {Gérard, Patrick, Grellier, Sandrine},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {L’équation de Szegö cubique},
url = {http://eudml.org/doc/11198},
year = {2008-2009},
}
TY - JOUR
AU - Gérard, Patrick
AU - Grellier, Sandrine
TI - L’équation de Szegö cubique
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 19
LA - fre
UR - http://eudml.org/doc/11198
ER -
References
top- Bahouri, H., Gérard, P., Xu, C.J. : Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, Journal d’Analyse Mathématique, 82, 93-118 (2000). Zbl0965.22010MR1799659
- Birnir, B., Kenig, C., Ponce, G., Svansted, N., Vega, L. : On the ill-posedness of the IVP for the generalized KdV and nonlinear Schrödinger equation. J. London Math. Soc. 53, 551-559 (1996). Zbl0855.35112MR1396718
- Bourgain, J. : Refinements of Strichartz’ inequality and applications to 2D NLS with critical nonlinearity, IMRN, 5, 253-283 (1998). Zbl0917.35126MR1616917
- Brezis, H., Gallouët, T. : Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677-681 (1980). Zbl0451.35023MR582536
- Burq, N., Gérard, P., Tzvetkov, N. : An instability property of the nonlinear Schrödinger equation on . Math. Res. Lett., 9, 323–335 (2002). Zbl1003.35113MR1909648
- Burq, N., Gérard, P., Tzvetkov, N. : Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. math. 159, 187-223 (2005) Zbl1092.35099MR2142336
- Burq, N., Gérard, P., Tzvetkov, N. : Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Scient. Éc. Norm. Sup. 38, 255-301 (2005). Zbl1116.35109MR2144988
- Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T., : Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation, preprint, 2008, arXiv : 08081742v2 [math.AP].
- Gérard, P. : Nonlinear Schrödinger equations in inhomogeneous media : wellposednes and illposedness results. Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, European Mathematical Society. Zbl1106.35096MR2275675
- Kappeler, T., Pöschel, J. : KdV & KAM, A Series of Modern Surveys in Mathematics, vol. 45, Springer-Verlag, 2003. MR1997070
- Kuksin, S. B. : Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000. Zbl0960.35001MR1857574
- Lax, P. : Integrals of Nonlinear equations of Evolution and Solitary Waves, Comm. Pure and Applied Math. 21, 467-490 (1968). Zbl0162.41103MR235310
- Lax, P. : Periodic solutions of the the KdV equation. Comm. Pure Appl. Math. 28 , 141–188 (1975). Zbl0295.35004MR369963
- Nikolski, N. K. : Operators, functions, and systems : an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. Zbl1007.47001MR1864396
- Ogawa, T. : A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14, 765–769 (1990). Zbl0715.35073MR1049119
- Peller, V. V. : Hankel operators and their applications. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003. Zbl1030.47002MR1949210
- Rudin, W. : Real and Complex Analysis, Mac Graw Hill, Second edition, 1980. Zbl0925.00005MR662565
- Tzvetkov, N. : A la frontière entre EDP semi et quasi linéaires, Mémoire d’habilitation à diriger les recherches, Université Paris-Sud, Orsay, 2003.
- Vladimirov, M. V. : On the solvability of a mixed problem for a nonlinear equation of Schrödinger type. Sov. math. Dokl. 29, 281-284 (1984). Zbl0585.35019MR745511
- Weinstein, M. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 567–576 (1982/83). Zbl0527.35023MR691044
- Weinstein, M. : Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39 , 51–67 (1986). Zbl0594.35005MR820338
- Yudovich, V. I. : Non-stationary flows of an ideal incompressible fluid. (Russian) Z. Vycisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963). Zbl0147.44303MR158189
- Zakharov, V. E., Shabat, A. B. : Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP 34 (1972), no. 1, 62–69. MR406174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.