Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations
Nicolas Burq; Patrick Gérard; Nikolay Tzvetkov
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 2, page 255-301
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBurq, Nicolas, Gérard, Patrick, and Tzvetkov, Nikolay. "Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations." Annales scientifiques de l'École Normale Supérieure 38.2 (2005): 255-301. <http://eudml.org/doc/82659>.
@article{Burq2005,
author = {Burq, Nicolas, Gérard, Patrick, Tzvetkov, Nikolay},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Nonlinear Schroedinger Equation; Eigenfunction Estimates; Global Existence; Compact Manifold},
language = {eng},
number = {2},
pages = {255-301},
publisher = {Elsevier},
title = {Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations},
url = {http://eudml.org/doc/82659},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Burq, Nicolas
AU - Gérard, Patrick
AU - Tzvetkov, Nikolay
TI - Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 2
SP - 255
EP - 301
LA - eng
KW - Nonlinear Schroedinger Equation; Eigenfunction Estimates; Global Existence; Compact Manifold
UR - http://eudml.org/doc/82659
ER -
References
top- [1] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal.3 (1993) 107-156. Zbl0787.35097MR1209299
- [2] Bourgain J., Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal.3 (1993) 157-178. Zbl0787.35096MR1209300
- [3] Bourgain J., Eigenfunction bounds for the Laplacian on the n-torus, Internat. Math. Res. Notices3 (1993) 61-66. Zbl0779.58039MR1208826
- [4] Bourgain J., Remarks on Strichartz' inequalities on irrational tori, Personal communication, 2004.
- [5] Burq N., Gérard P., Tzvetkov N., Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (3) (2004) 569-605. Zbl1067.58027MR2058384
- [6] Burq N., Gérard P., Tzvetkov N., An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett.9 (2–3) (2002) 323-335. Zbl1003.35113MR1909648
- [7] Burq N., Gérard P., Tzvetkov N., The Cauchy problem for the nonlinear Schrödinger equation on compact manifold, J. Nonlinear Math. Phys.10 (2003) 12-27. MR2063542
- [8] Burq N., Gérard P., Tzvetkov N., Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math.159 (2005) 187-223. Zbl1092.35099MR2142336
- [9] Burq N., Gérard P., Tzvetkov N., Multilinear estimates for Laplace spectral projectors on compact manifolds, C. R. Acad. Sci. Paris Ser. I338 (2004) 359-364. Zbl1040.58011MR2057164
- [10] Cazenave T., Semi-Linear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
- [11] Christ M., Colliander J., Tao T., Ill-posedness for nonlinear Schrödinger and wave equations, Preprint, 2003. MR2018661
- [12] Gallot S., Hulin D., Lafontaine J., Riemannian Geometry, Universitext, Springer-Verlag, Berlin, 1990. Zbl0636.53001MR1083149
- [13] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations, J. Funct. Anal.32 (1979) 1-71. Zbl0396.35029MR533219
- [14] Ginibre J., Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki, Exp. 796, Astérisque237 (1996) 163-187. Zbl0870.35096MR1423623
- [15] Hörmander L., The spectral function of an elliptic operator, Acta Math.121 (1968) 193-218. Zbl0164.13201MR609014
- [16] Hörmander L., Oscillatory integrals and multipliers on , Ark. Math.11 (1973) 1-11. Zbl0254.42010MR340924
- [17] Kato T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré Phys. Théor.46 (1987) 113-129. Zbl0632.35038MR877998
- [18] Klainerman S., Machedon M., Remark on Strichartz-type inequalities, Internat. Math. Res. Notices5 (1996) 201-220, With appendices by J. Bourgain and D. Tataru. Zbl0853.35062MR1383755
- [19] Klainerman S., Machedon M., Finite energy solutions of the Yang–Mills equations in , Ann. of Math. (2)142 (1) (1995) 39-119. Zbl0827.53056MR1338675
- [20] Koch H., Tataru D., Personal communication, 2004.
- [21] Lions J.-L., Quelques méthodes de résolution des équations aux dérivées partielles non linéaires, Dunod, Paris, 1969. Zbl0189.40603
- [22] Sogge C., Oscillatory integrals and spherical harmonics, Duke Math. J.53 (1986) 43-65. Zbl0636.42018MR835795
- [23] Sogge C., Concerning the norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal.77 (1988) 123-138. Zbl0641.46011MR930395
- [24] Sogge C., Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 1993. Zbl0783.35001MR1205579
- [25] Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Monographs in Harmonic Analysis, vol. III, Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
- [26] Szegö G., Orthogonal Polynomials, Colloq. Publications, American Mathematical Society, Providence, RI, 1974.
- [27] Zygmund A., On Fourier coefficients and transforms of functions of two variables, Studia Math.50 (1974) 189-201. Zbl0278.42005MR387950
- [28] Tao T., Multilinear weighted convolutions of functions, and applications to non-linear dispersive equations, Amer. J. Math.123 (2001) 839-908. Zbl0998.42005MR1854113
Citations in EuDML Documents
top- Patrick Gérard, Sandrine Grellier, The cubic Szegő equation
- Patrick Gérard, Sandrine Grellier, L’équation de Szegö cubique
- Nikolay Tzvetkov, Invariant measures for the defocusing Nonlinear Schrödinger equation
- Sijia Zhong, Global existence of solutions to Schrödinger equations on compact riemannian manifolds below
- Patrick Gérard, Vittoria Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds
- Nicolas Burq, Laurent Thomann, Nikolay Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation
- Sebastian Herr, Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics
- Patrick Gérard, Sur le caractère bien posé des équations de Schrödinger non linéaires
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.