Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations

Nicolas Burq; Patrick Gérard; Nikolay Tzvetkov

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 2, page 255-301
  • ISSN: 0012-9593

How to cite

top

Burq, Nicolas, Gérard, Patrick, and Tzvetkov, Nikolay. "Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations." Annales scientifiques de l'École Normale Supérieure 38.2 (2005): 255-301. <http://eudml.org/doc/82659>.

@article{Burq2005,
author = {Burq, Nicolas, Gérard, Patrick, Tzvetkov, Nikolay},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Nonlinear Schroedinger Equation; Eigenfunction Estimates; Global Existence; Compact Manifold},
language = {eng},
number = {2},
pages = {255-301},
publisher = {Elsevier},
title = {Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations},
url = {http://eudml.org/doc/82659},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Burq, Nicolas
AU - Gérard, Patrick
AU - Tzvetkov, Nikolay
TI - Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 2
SP - 255
EP - 301
LA - eng
KW - Nonlinear Schroedinger Equation; Eigenfunction Estimates; Global Existence; Compact Manifold
UR - http://eudml.org/doc/82659
ER -

References

top
  1. [1] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal.3 (1993) 107-156. Zbl0787.35097MR1209299
  2. [2] Bourgain J., Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal.3 (1993) 157-178. Zbl0787.35096MR1209300
  3. [3] Bourgain J., Eigenfunction bounds for the Laplacian on the n-torus, Internat. Math. Res. Notices3 (1993) 61-66. Zbl0779.58039MR1208826
  4. [4] Bourgain J., Remarks on Strichartz' inequalities on irrational tori, Personal communication, 2004. 
  5. [5] Burq N., Gérard P., Tzvetkov N., Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (3) (2004) 569-605. Zbl1067.58027MR2058384
  6. [6] Burq N., Gérard P., Tzvetkov N., An instability property of the nonlinear Schrödinger equation on S d , Math. Res. Lett.9 (2–3) (2002) 323-335. Zbl1003.35113MR1909648
  7. [7] Burq N., Gérard P., Tzvetkov N., The Cauchy problem for the nonlinear Schrödinger equation on compact manifold, J. Nonlinear Math. Phys.10 (2003) 12-27. MR2063542
  8. [8] Burq N., Gérard P., Tzvetkov N., Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math.159 (2005) 187-223. Zbl1092.35099MR2142336
  9. [9] Burq N., Gérard P., Tzvetkov N., Multilinear estimates for Laplace spectral projectors on compact manifolds, C. R. Acad. Sci. Paris Ser. I338 (2004) 359-364. Zbl1040.58011MR2057164
  10. [10] Cazenave T., Semi-Linear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
  11. [11] Christ M., Colliander J., Tao T., Ill-posedness for nonlinear Schrödinger and wave equations, Preprint, 2003. MR2018661
  12. [12] Gallot S., Hulin D., Lafontaine J., Riemannian Geometry, Universitext, Springer-Verlag, Berlin, 1990. Zbl0636.53001MR1083149
  13. [13] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations, J. Funct. Anal.32 (1979) 1-71. Zbl0396.35029MR533219
  14. [14] Ginibre J., Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki, Exp. 796, Astérisque237 (1996) 163-187. Zbl0870.35096MR1423623
  15. [15] Hörmander L., The spectral function of an elliptic operator, Acta Math.121 (1968) 193-218. Zbl0164.13201MR609014
  16. [16] Hörmander L., Oscillatory integrals and multipliers on F L p , Ark. Math.11 (1973) 1-11. Zbl0254.42010MR340924
  17. [17] Kato T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré Phys. Théor.46 (1987) 113-129. Zbl0632.35038MR877998
  18. [18] Klainerman S., Machedon M., Remark on Strichartz-type inequalities, Internat. Math. Res. Notices5 (1996) 201-220, With appendices by J. Bourgain and D. Tataru. Zbl0853.35062MR1383755
  19. [19] Klainerman S., Machedon M., Finite energy solutions of the Yang–Mills equations in R 3 + 1 , Ann. of Math. (2)142 (1) (1995) 39-119. Zbl0827.53056MR1338675
  20. [20] Koch H., Tataru D., Personal communication, 2004. 
  21. [21] Lions J.-L., Quelques méthodes de résolution des équations aux dérivées partielles non linéaires, Dunod, Paris, 1969. Zbl0189.40603
  22. [22] Sogge C., Oscillatory integrals and spherical harmonics, Duke Math. J.53 (1986) 43-65. Zbl0636.42018MR835795
  23. [23] Sogge C., Concerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal.77 (1988) 123-138. Zbl0641.46011MR930395
  24. [24] Sogge C., Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 1993. Zbl0783.35001MR1205579
  25. [25] Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Monographs in Harmonic Analysis, vol. III, Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
  26. [26] Szegö G., Orthogonal Polynomials, Colloq. Publications, American Mathematical Society, Providence, RI, 1974. 
  27. [27] Zygmund A., On Fourier coefficients and transforms of functions of two variables, Studia Math.50 (1974) 189-201. Zbl0278.42005MR387950
  28. [28] Tao T., Multilinear weighted convolutions of L 2 functions, and applications to non-linear dispersive equations, Amer. J. Math.123 (2001) 839-908. Zbl0998.42005MR1854113

Citations in EuDML Documents

top
  1. Patrick Gérard, Sandrine Grellier, The cubic Szegő equation
  2. Patrick Gérard, Sandrine Grellier, L’équation de Szegö cubique
  3. Nikolay Tzvetkov, Invariant measures for the defocusing Nonlinear Schrödinger equation
  4. Sijia Zhong, Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1
  5. Patrick Gérard, Vittoria Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds
  6. Nicolas Burq, Laurent Thomann, Nikolay Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation
  7. Sebastian Herr, Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics
  8. Patrick Gérard, Sur le caractère bien posé des équations de Schrödinger non linéaires

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.