Énergies relaxées pour applications harmoniques

F. Bethuel

Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990)

  • page 1-9

How to cite

top

Bethuel, F.. "Énergies relaxées pour applications harmoniques." Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990): 1-9. <http://eudml.org/doc/111986>.

@article{Bethuel1989-1990,
author = {Bethuel, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {weakly harmonic maps},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Énergies relaxées pour applications harmoniques},
url = {http://eudml.org/doc/111986},
year = {1989-1990},
}

TY - JOUR
AU - Bethuel, F.
TI - Énergies relaxées pour applications harmoniques
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1989-1990
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
KW - weakly harmonic maps
UR - http://eudml.org/doc/111986
ER -

References

top
  1. [B] F. Bethuel: A characterization of maps in H1(B3, S2) which can be approximated by smooth maps, AIHP analyse non linéaire à paraître. Zbl0708.58004
  2. [BB] F. Bethuel et H. Brezis, Regularity of minimizers of relaxed problems for harmonic maps. Zbl0797.49034
  3. [BBC] F. Bethuel, H. Brezis, et J.M. Coron: Relaxed energies for harmonic maps, à paraître dans "Actes du congrès problèmes variationnelsParis 13-18 Juin 1988" Birkhauser Ed. Zbl0793.58011MR1205144
  4. [BCL] H. Brezis, J.M. Coron, E.H. Lieb: Harmonic maps with defectsComm. Math. Phys.107 (1986) p.649-705. Zbl0608.58016MR868739
  5. [BZ] F. Bethuel et X. Zheng: "Density of smooth functions between two manifolds in Sobolev spaces", J. Funct Anal.80 (1988) p. 60-75. Zbl0657.46027MR960223
  6. [G] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press (1983). Zbl0516.49003MR717034
  7. [GMS] M. Giaquinta, G. Modica et J. Souček: The Dirichlet Energy of mappings with value into the sphere. Manuscripta Math. Zbl0678.49006MR1019705
  8. [JM] J. Jost et M. Meier: "Boundary regularity for minima of certain quadratic functionals" Math Ann262 (1983) 549-561. Zbl0488.49004MR696525
  9. [HKL] R. Hardt, D. Kinderlehrer et F.H. Lin: Stable defects of minimizers of constrainded variational principlesAnn. IHP Analyse non linéaire (1988). Zbl0657.49018MR963102
  10. [HL1] R. Hardt et F.H. Lin: Mappings minimizing the LP norm of the gradient. Comm. pure Appl. Math40 (1987) p.556-588. Zbl0646.49007MR896767
  11. [HL2] R. Hardt et F.H. Lin: A remark on H1 mappingsManuscripta Math56 (1986) p1-10. Zbl0618.58015MR846982
  12. [M] L. Mou: Harmonie maps with prescribed finite singularities, à paraître. Zbl0686.58010
  13. [P] C.C. Poon: Some new harmonic maps from B3 to S2, prépublication. Zbl0738.58019
  14. [SU1] R. Schoen et K. Uhlenbeck: A regularity theorie for harmonic mapsJ. Diff. Geom.17 (1982) P.307-335. Zbl0521.58021MR664498
  15. [SU2] R. Schoen et K. Uhlenbeck: Boundary regularity and the Dirichlet problem for harmonic mapsJ. Diff. Geom.18 (1983) 253-268. Zbl0547.58020MR710054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.