Énergies relaxées pour applications harmoniques
Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990)
- page 1-9
Access Full Article
topHow to cite
topBethuel, F.. "Énergies relaxées pour applications harmoniques." Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990): 1-9. <http://eudml.org/doc/111986>.
@article{Bethuel1989-1990,
author = {Bethuel, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {weakly harmonic maps},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Énergies relaxées pour applications harmoniques},
url = {http://eudml.org/doc/111986},
year = {1989-1990},
}
TY - JOUR
AU - Bethuel, F.
TI - Énergies relaxées pour applications harmoniques
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1989-1990
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
KW - weakly harmonic maps
UR - http://eudml.org/doc/111986
ER -
References
top- [B] F. Bethuel: A characterization of maps in H1(B3, S2) which can be approximated by smooth maps, AIHP analyse non linéaire à paraître. Zbl0708.58004
- [BB] F. Bethuel et H. Brezis, Regularity of minimizers of relaxed problems for harmonic maps. Zbl0797.49034
- [BBC] F. Bethuel, H. Brezis, et J.M. Coron: Relaxed energies for harmonic maps, à paraître dans "Actes du congrès problèmes variationnelsParis 13-18 Juin 1988" Birkhauser Ed. Zbl0793.58011MR1205144
- [BCL] H. Brezis, J.M. Coron, E.H. Lieb: Harmonic maps with defectsComm. Math. Phys.107 (1986) p.649-705. Zbl0608.58016MR868739
- [BZ] F. Bethuel et X. Zheng: "Density of smooth functions between two manifolds in Sobolev spaces", J. Funct Anal.80 (1988) p. 60-75. Zbl0657.46027MR960223
- [G] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press (1983). Zbl0516.49003MR717034
- [GMS] M. Giaquinta, G. Modica et J. Souček: The Dirichlet Energy of mappings with value into the sphere. Manuscripta Math. Zbl0678.49006MR1019705
- [JM] J. Jost et M. Meier: "Boundary regularity for minima of certain quadratic functionals" Math Ann262 (1983) 549-561. Zbl0488.49004MR696525
- [HKL] R. Hardt, D. Kinderlehrer et F.H. Lin: Stable defects of minimizers of constrainded variational principlesAnn. IHP Analyse non linéaire (1988). Zbl0657.49018MR963102
- [HL1] R. Hardt et F.H. Lin: Mappings minimizing the LP norm of the gradient. Comm. pure Appl. Math40 (1987) p.556-588. Zbl0646.49007MR896767
- [HL2] R. Hardt et F.H. Lin: A remark on H1 mappingsManuscripta Math56 (1986) p1-10. Zbl0618.58015MR846982
- [M] L. Mou: Harmonie maps with prescribed finite singularities, à paraître. Zbl0686.58010
- [P] C.C. Poon: Some new harmonic maps from B3 to S2, prépublication. Zbl0738.58019
- [SU1] R. Schoen et K. Uhlenbeck: A regularity theorie for harmonic mapsJ. Diff. Geom.17 (1982) P.307-335. Zbl0521.58021MR664498
- [SU2] R. Schoen et K. Uhlenbeck: Boundary regularity and the Dirichlet problem for harmonic mapsJ. Diff. Geom.18 (1983) 253-268. Zbl0547.58020MR710054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.