Stable defects of minimizers of constrained variational principles

R. Hardt; D. Kinderlehrer; Fang-Hua Lin

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 4, page 297-322
  • ISSN: 0294-1449

How to cite

top

Hardt, R., Kinderlehrer, D., and Lin, Fang-Hua. "Stable defects of minimizers of constrained variational principles." Annales de l'I.H.P. Analyse non linéaire 5.4 (1988): 297-322. <http://eudml.org/doc/78155>.

@article{Hardt1988,
author = {Hardt, R., Kinderlehrer, D., Lin, Fang-Hua},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {constrained variational problems; liquid crystals; harmonic maps; energy density bound; interior energy bound; singular set; compactness theorems},
language = {eng},
number = {4},
pages = {297-322},
publisher = {Gauthier-Villars},
title = {Stable defects of minimizers of constrained variational principles},
url = {http://eudml.org/doc/78155},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Hardt, R.
AU - Kinderlehrer, D.
AU - Lin, Fang-Hua
TI - Stable defects of minimizers of constrained variational principles
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 4
SP - 297
EP - 322
LA - eng
KW - constrained variational problems; liquid crystals; harmonic maps; energy density bound; interior energy bound; singular set; compactness theorems
UR - http://eudml.org/doc/78155
ER -

References

top
  1. [AL] F.J. Almgren Jr. and E. Lieb, Singularities of Energy Minimizing Maps from the Ball to the Sphere, preprint. 
  2. [BCL1] H. Brezis, J.-M. Coron and E. Lieb, Estimations d'energie pour des applications de R3 a valours dans S2, C.R. Acad. Sci. Paris, t. 303, Series I, 1986, pp. 207-210. MR854735
  3. [BCL2] H. Brezis, J.-M. Coron and E. Lieb, Harmonic Maps with Defects, Comm. Math. Physics, Vol. 107, 1986, pp. 699-705. Zbl0608.58016MR868739
  4. [BC] W. Brinkman and P. Cladis, Defects in Liquid Crystals, Physics Today, Vol. 35, 1982, pp. 48-54. 
  5. [CE] M. Chipot and L.C. Evans, Linearisation at Infinity and Lipschitz Estimates for Certain Problems in the Calculus of Variations, Proc. Royal Soc. Edinburgh, Vol. 102A, 1986, pp. 291-303. Zbl0602.49029MR852362
  6. [CHKLL] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum Energy Configurations from Liquid Crystals: Computational Results, Theory and appl. of liquid crystals, I.M.A., Volumes in Math. and Appl., Vol. 5Springer, 1987, 99-122. 
  7. [DF] F. Duzaar and M. Fuchs, Optimal Regularity Theorems for Variational Problems with Obstacles, Mansucripta Math. (to appear). Zbl0605.49006
  8. [EG] L.C. Evans and R.F. Gariepy, Blow-Up, Compactness and Partial Regularity in the Calculus of Variations, Preprint. Univ. of Maryland, 1985. MR934775
  9. [E] J.L. Ericksen, Equilibrium Theory of Liquid Crystals, Adv. Liq. Cryst., Vol. 2, G. H. BROWN Ed., Academic Press, 1976, pp. 233-299. 
  10. [F] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1969. Zbl0176.00801MR257325
  11. [Fu] M. Fuchs, P-Harmonic Obstacle Problems, Preprint, Dusseldorf, 1986. 
  12. [FH] N. Fusco and J. Hutchinson, Partial Regularity for Minimizers of Certain Functionals Having Nonquadratic Growth. Preprint, C.M.A., Canberra1985. 
  13. [G] M. Giaquinta, Multiple Integrals in the Calculus of Variation and Nonlinear Elliptic Systems, Ann. Math. Studies, Vol. 105, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
  14. [GG] M. Giaquinta and E. Giusti, The Singular set of the Minima of Certain Quadratic Functionals, Ann. Sc. Norm. Sup. Pisa, (IV), Vol. XI, 1, 1984, pp. 45-55. Zbl0543.49018MR752579
  15. [GM] M. Giaquinta and G. Modica, Partial Regularity of Minimizers of Quasiconvex Integrals, Ann. Inst. H. Poincaré, Analyse nonlinéaire, Vol. 3, 1986. Zbl0594.49004MR847306
  16. [HK1] R. Hardt and D. Kinderlehrer, Mathematical Questions of Liquid Crystal Theory, Theory and Applications of Liquid Crystals, I.M.A. Vol. in Math. and Appl., Vol. 5, J. L. ERICKSEN and D. KINDERLEHRER Eds., Springer, 1987, pp. 151-184. MR900833
  17. [HK2] R. Hardt and D. Kinderlehrer, Mathematical Questions of Liquid Crystal Theory. College de France Sem., 1987. Zbl0704.76005MR900833
  18. [HKL1] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and Partial Regularity of Static Liquid Crystal Configurations, Comm. Math. Phys., Vol. 105, 1986, pp. 547-570. Zbl0611.35077MR852090
  19. [HKL2] R. Hardt, D. Kinderlehrer and F.H. Lin, A remark About the Stability of Smooth Equilibrium Configurations of Static Liquid Crystals, Mol. Cryst. Liq. Cryst., Vol. 139, 1986, pp. 189-194. 
  20. [HKLu] R. Hardt, D. Kinderlehrer and M. Luskin, Remarks About the Mathematical Theory of Liquid Crystals, Proc. C.I.R.M. Trento, I.M.A., preprint 276 (to appear). Zbl0696.49053MR974607
  21. [HL1] R. Hardt and F.H. Lin, Mappings Minimizing the Lp Norm of the Gradient, Comm. Pure & Appl. Math. (to appear). Zbl0646.49007
  22. [HL2] R. Hardt and F.H. Lin, Stability of Singularities of Minimizing Harmonic MapsJ. Diff. Geom., to appear . Zbl0673.58016
  23. [K] D. Kinderlehrer, Remarks about Signorini's Problem in Linear Elasticity, Ann. S.N.S. Pisa, Vol. VIII, 1981, pp. 605-645. Zbl0482.73017MR656002
  24. [L] F. Leslie, Some Topics in the Equilibrium Theory of Liquid Crystals, Theory and Applications of Liquid Crystals, I.M.A. Vol. in Math. and Appl., Vol. 5, J. L. ERICKSEN and D. KINDERLEHRER Eds., Springer, 1987, pp. 211-234. 
  25. [Lu] S. Luckhaus, Partial Holder Continuity for Minima of Certain Energies Among Maps into a Riemannian Manifold, Preprint 384, Universitat Heidelberg, 1986. MR963506
  26. [Mo] F. Morgan, Harnack-Type Mass Bounds and Bernstein Theorems for Area Minimizing Flat Chains Modulov, Comm. P.D.E., Vol. 11, 1986, pp. 1257- 1286. Zbl0617.49019MR857167
  27. [M] C.B. Morrey Jr., Multiple Integrals in the Calculus ov Variations, Springer, 1966. Zbl0142.38701
  28. [SU] R. Schoen and K. Uhlenbeck, A Regularity Theory for Harmonic Maps, J. Diff. Geom., Vol. 17, 1982, pp. 307-335. Zbl0521.58021MR664498
  29. [W] B. White, A Regularity Theorem for Minimizing Hypersurfaces Modulo p, Proc. Symp. Pure Math. A.M.S., Vol. 44, 1984, pp. 413-428. Zbl0586.49027MR840290
  30. [WPC] C. Williams, P. Pieranski and P. Cladis, Nonsingular S = +1 Screw Disinclination Lines in Nematics, Phys. Rev. Letters, Vol. 29, 1972, pp. 90-92. 

Citations in EuDML Documents

top
  1. F. Alouges, J. M. Ghidaglia, Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
  2. F. Bethuel, Énergies relaxées pour applications harmoniques
  3. Dong Zhang, The existence of nonminimal regular harmonic maps from B 3 to S 2
  4. J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps
  5. M. Giaquinta, G. Modica, J. Souček, Cartesian currents and variational problems for mappings into spheres
  6. Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen, Density of smooth maps for fractional Sobolev spaces W s , p into simply connected manifolds when s 1
  7. Jean Bourgain, Haim Brezis, Petru Mironescu, H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.