Weak Bloch property and weight estimates for elliptic operators
Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990)
- page 1-20
Access Full Article
topHow to cite
topShubin, M. A.. "Weak Bloch property and weight estimates for elliptic operators." Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990): 1-20. <http://eudml.org/doc/111997>.
@article{Shubin1989-1990,
author = {Shubin, M. A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Riemannian manifold; decay of Green functions; structural inverse operators; subexponential growth},
language = {eng},
pages = {1-20},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Weak Bloch property and weight estimates for elliptic operators},
url = {http://eudml.org/doc/111997},
year = {1989-1990},
}
TY - JOUR
AU - Shubin, M. A.
TI - Weak Bloch property and weight estimates for elliptic operators
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1989-1990
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 20
LA - eng
KW - Riemannian manifold; decay of Green functions; structural inverse operators; subexponential growth
UR - http://eudml.org/doc/111997
ER -
References
top- [C-G-T] J. Cheeger, M. Gromov, M. Taylor.Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds. J. Diff. Geom.17 (1982), 15-53. Zbl0493.53035MR658471
- [C-F-K-S] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon.Schrödinger operators. Springer, Berlin e.a., 1987.
- [G] M. Gromov.Curvature, diameter and Betti numbers. Comment Math. Helvetici56 (1981), 179-195. Zbl0467.53021MR630949
- [H] L. Hörmander.The analysis of linear partial differential operators. Berlin e.a., Springer-Verlag, vol. 1,2 (1983), vol. 3,4 (1985). Zbl0521.35002
- [K-O-S] T. Kobayashi, K. Ono, T. Sunada.Periodic Schrödinger opera tors on a manifold. Forum Math.1 (1989), 69-79. Zbl0655.58033MR978976
- [Kor 1] Yu. A. Kordyukov.Lp-theory of elliptic differential operators with bounded coefhcients. Vestnik Moskovskogo Universiteta, Ser. I Math. Mech.1988, N°4, 98-100 (in Russian). Zbl0681.47022MR972732
- [Kor 2] Yu. A. Kordyukov.Elliptic operators on manifolds of bounded geometry. Thesis, Moscow State University, 1987 (in Russian)
- [M-S] G.A. Meladze, M.A. Shubin.Properly supported uniform pseudo-differential operators on unimodular Lie groups. Trudy Sem. Petrovskogo11 (1986), 74-97; Functional calculus of pseudo-differential operators on unimodular Lie groups. Trudy Sem. Petrovskogo12 (1987), 164-200 (in Russian). Zbl0597.58035
- [Sch] E. Schnol.On the behaviour of the Schrödinger equation. Mat. Sbornik42 (1957), 273-286 (in Russian). Zbl0078.27904
- [S] M.A. Shubin.Pseudodifference operators and their Green's functions. Math. USSR Izvestiya26 (1986), N3, 605-622. Zbl0595.39008MR794959
- [R] J. Roe.An index theorem on open manifolds. I. II. J. Diff. Geom.27 (1988), 87-113, 115-136. Zbl0657.58041MR918459
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.