Weak Bloch property and weight estimates for elliptic operators

M. A. Shubin

Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990)

  • page 1-20

How to cite

top

Shubin, M. A.. "Weak Bloch property and weight estimates for elliptic operators." Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990): 1-20. <http://eudml.org/doc/111997>.

@article{Shubin1989-1990,
author = {Shubin, M. A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Riemannian manifold; decay of Green functions; structural inverse operators; subexponential growth},
language = {eng},
pages = {1-20},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Weak Bloch property and weight estimates for elliptic operators},
url = {http://eudml.org/doc/111997},
year = {1989-1990},
}

TY - JOUR
AU - Shubin, M. A.
TI - Weak Bloch property and weight estimates for elliptic operators
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1989-1990
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 20
LA - eng
KW - Riemannian manifold; decay of Green functions; structural inverse operators; subexponential growth
UR - http://eudml.org/doc/111997
ER -

References

top
  1. [C-G-T] J. Cheeger, M. Gromov, M. Taylor.Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds. J. Diff. Geom.17 (1982), 15-53. Zbl0493.53035MR658471
  2. [C-F-K-S] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon.Schrödinger operators. Springer, Berlin e.a., 1987. 
  3. [G] M. Gromov.Curvature, diameter and Betti numbers. Comment Math. Helvetici56 (1981), 179-195. Zbl0467.53021MR630949
  4. [H] L. Hörmander.The analysis of linear partial differential operators. Berlin e.a., Springer-Verlag, vol. 1,2 (1983), vol. 3,4 (1985). Zbl0521.35002
  5. [K-O-S] T. Kobayashi, K. Ono, T. Sunada.Periodic Schrödinger opera tors on a manifold. Forum Math.1 (1989), 69-79. Zbl0655.58033MR978976
  6. [Kor 1] Yu. A. Kordyukov.Lp-theory of elliptic differential operators with bounded coefhcients. Vestnik Moskovskogo Universiteta, Ser. I Math. Mech.1988, N°4, 98-100 (in Russian). Zbl0681.47022MR972732
  7. [Kor 2] Yu. A. Kordyukov.Elliptic operators on manifolds of bounded geometry. Thesis, Moscow State University, 1987 (in Russian) 
  8. [M-S] G.A. Meladze, M.A. Shubin.Properly supported uniform pseudo-differential operators on unimodular Lie groups. Trudy Sem. Petrovskogo11 (1986), 74-97; Functional calculus of pseudo-differential operators on unimodular Lie groups. Trudy Sem. Petrovskogo12 (1987), 164-200 (in Russian). Zbl0597.58035
  9. [Sch] E. Schnol.On the behaviour of the Schrödinger equation. Mat. Sbornik42 (1957), 273-286 (in Russian). Zbl0078.27904
  10. [S] M.A. Shubin.Pseudodifference operators and their Green's functions. Math. USSR Izvestiya26 (1986), N3, 605-622. Zbl0595.39008MR794959
  11. [R] J. Roe.An index theorem on open manifolds. I. II. J. Diff. Geom.27 (1988), 87-113, 115-136. Zbl0657.58041MR918459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.