Appendice à l'exposé : «Weak bloch property and weight estimates for elliptic operators»

M. A. Shubin

Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990)

  • page 1-10

How to cite

top

Shubin, M. A.. "Appendice à l'exposé : «Weak bloch property and weight estimates for elliptic operators»." Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990): 1-10. <http://eudml.org/doc/111999>.

@article{Shubin1989-1990,
author = {Shubin, M. A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Riemannian manifold; decay of Green functions; structural inverse operators; subexponential growth},
language = {eng},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Appendice à l'exposé : «Weak bloch property and weight estimates for elliptic operators»},
url = {http://eudml.org/doc/111999},
year = {1989-1990},
}

TY - JOUR
AU - Shubin, M. A.
TI - Appendice à l'exposé : «Weak bloch property and weight estimates for elliptic operators»
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1989-1990
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - eng
KW - Riemannian manifold; decay of Green functions; structural inverse operators; subexponential growth
UR - http://eudml.org/doc/111999
ER -

References

top
  1. [A] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, C.P.A.M.15(1)(1962), 119-147. Zbl0109.32701MR147774
  2. [B] F.E. Browder,, On the spectral theory of elliptic differential operators. I, Math. Ann.142(1)(1960-61), 22-130. Zbl0104.07502MR209909
  3. [D] E.B. Davies, L1-properties of second order elliptic operators, Bull. London Math. Soc.17(5)(1985), 417-436. Zbl0583.35032MR806008
  4. [G] M. Gromoy, Structures métriques pour les variétés Riemanniennes, CEDIC/Fernand Nathan (1981). Zbl0509.53034MR682063
  5. [K] T. Kato, LP-theory of Schrödinger operators with a singular potential, In: Aspects of positivity in functional analysis-Proc. of a Conference in Tübingen, North Holland, Math. Studies122 (1986), 63-78. Zbl0627.47025MR859719
  6. [Ko1] Yu.A. KordyuKov, LP-theory of elliptic differential operators with bounded coefficients, Vestnik Moskovskogo Universiteta, Ser.IMath. Mech.1988, n°4, 98-100 (in Russian). Zbl0681.47022MR972732
  7. [Ko2] Yu.A. Kordyukov, Elliptic operators on manifolds of bounded geometry., Thesis, Moscow State University (1987) (in Russian) 
  8. [Sel R. Seeley, Complex powers of elliptic operators, Proc. Symp. Pure Math.10(1967),288-307. Zbl0159.15504MR237943
  9. [S1] M.A. Shubin, Weak Bloch property and weight estimates for elliptic operators, Sém. E.D.P. Ecole Polytechnique1989-90, exposé n° MR1073180
  10. [S2] M.A. Shubin, Pseudodifferential operators and spectral theory, Springer Verlag (1987), Original Russian Edition: Publisher Nauka, Moscow1978. Zbl0616.47040
  11. [Ste] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. A.M.S.,199(1)(1974),141-162. Zbl0264.35043MR358067
  12. [Str] R.S. Strichartz, Lp-contractive projections and the heat semigroup for differential forms, J.Funct. Anal., 65(3)(1986),348-357. Zbl0587.58044MR826432

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.