Pôles de la matrice de diffusion pour des perturbations captives

V. M. Petkov

Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)

  • page 1-13

How to cite

top

Petkov, V. M.. "Pôles de la matrice de diffusion pour des perturbations captives." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-13. <http://eudml.org/doc/112007>.

@article{Petkov1990-1991,
author = {Petkov, V. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {diffusion phase},
language = {fre},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Pôles de la matrice de diffusion pour des perturbations captives},
url = {http://eudml.org/doc/112007},
year = {1990-1991},
}

TY - JOUR
AU - Petkov, V. M.
TI - Pôles de la matrice de diffusion pour des perturbations captives
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - fre
KW - diffusion phase
UR - http://eudml.org/doc/112007
ER -

References

top
  1. [1] C. Bardos, J.C. Guillot et J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné, Comm. in P.D.E., 7 (1982), 905-958. Zbl0496.35067MR668585
  2. [2] V. Buslaev, Scaterring plane waves, spectral asymptotics and trace formulas in exterior problem, Dokl. Akad. Nauk SSSR, 197 (1971), 999-1002. Zbl0224.47023MR278108
  3. [3] C. Gérard, A. Martinez, D. Robert, Breit-Wigner formulas for the scattering phase and total scattering cross-section in the semi-classical limit, Commun. Math. Phys., 121 (1989), 323-336. Zbl0704.35114MR985402
  4. [4] T.E. Gurejev, Yu. Safarov, Precise asymptotics of the spectrum for the Laplace operator on manifolds with periodic geodesics, LOMI preprint E-1-86, Leningrad and Trans. MIAN URSS,179. 
  5. [5] M. Ikawa, Trapping obstacles with a, séquence of poles converging to the real axis, Osaka J. Math., 22 (1985), 657-689. Zbl0617.35102MR815439
  6. [6] P. Lax, R. Phillips, Scattering Theory, Académie Press, 1967. Zbl0186.16301MR217440
  7. [7] A. Majda and J. Ralston, An analogue of Weyl's theorem for unbounded domains, II, Duke Math. J.45 (1978), 513-536 and III, 46 (1979), 725-731. Zbl0416.35058
  8. [8] R. Melrose, Polynomial bound on the number of scattering poles, J. Funct. Anal., 53 (1983), 287-303. Zbl0535.35067MR724031
  9. [9] R. Melrose, Weyl asymptotics for the phase in obstacle scattering, Comm. PDE, 13 (1988),1431-1439. Zbl0686.35089MR956828
  10. [10] V. Petkov, L. Stoyanov, On the number of periodic reflecting rays in generic domains, Erg. Th. Dynam. Systems, 8 (1988), 81-91. Zbl0668.58005MR939062
  11. [11] V. Petkov, Phase de diffusion pour des perturbations captives, ConférenceSaint-Jean-de-Monts, 1990, Société Mathématique de France. Zbl0718.35007MR1069955
  12. [12] J. Ralston, Trapped rays in spherically symmetric media, and poles of the scattering matrix, Comm. Pure Appl. Math., 24 (1971), 571-582. Zbl0206.39603MR457962
  13. [13] D. Robert, Asymptotique à grande énergie de la phase de diffusion pour un potentiel, Asymptotic Analysis3 (1991), 301-320. Zbl0737.35054MR1094679
  14. [14] D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplcien. preprint, Août 1990. Zbl0801.35100MR1169349
  15. [15] Yu Safarov, Asymptotic of the spectrum of pseudo-differential operator with periodic bicharacteristics, Trans. Sci. SeminarLOMI, 152 (1986), 94-104 (In Russian). Zbl0621.35071MR869246
  16. [16] Yu Safarov, Exact asymptotics of the spectrum of a boundary value problem and periodic billiards Izv AN SSSR, Ser. Mat.52 (1988), 1230-1251. Math. USSR Izvestiya33 (1989), 553-573. Zbl0682.35082MR984217
  17. [17] J. Sjöstrand, Estimations sur les résonances pour le Laplacien avec une perturbation à support compact, Séminaire EDP, Ecole Polytechnique, 1990-1991. Zbl0739.35051MR1131582
  18. [18] J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, preprint. Zbl0752.35046MR1115789
  19. [19] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, n &gt; 3 odd, preprint 1990. 

NotesEmbed ?

top

You must be logged in to post comments.