Analyse semi-classique de l'opérateur de Schrödinger sur la sphère

A. Grigis

Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)

  • page 1-9

How to cite

top

Grigis, A.. "Analyse semi-classique de l'opérateur de Schrödinger sur la sphère." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-9. <http://eudml.org/doc/112017>.

@article{Grigis1990-1991,
author = {Grigis, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger operator; spectrum; Laplace-Beltrami operator},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Analyse semi-classique de l'opérateur de Schrödinger sur la sphère},
url = {http://eudml.org/doc/112017},
year = {1990-1991},
}

TY - JOUR
AU - Grigis, A.
TI - Analyse semi-classique de l'opérateur de Schrödinger sur la sphère
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
KW - Schrödinger operator; spectrum; Laplace-Beltrami operator
UR - http://eudml.org/doc/112017
ER -

References

top
  1. [B] Berezin F.A.: General concept of quantization, CMP40 (1975) p.153-174. Zbl1272.53082MR411452
  2. [CV] Colin de Verdiere Y.: Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable, Math. Z.171 (1980) p. 51-73. Zbl0478.35073MR566483
  3. [G-G] Gerard C. et Grigis A.: Precise estimates of tunneling and eigenvalues near a potential barrier, J. of Diff. E.72 (1) (1988) p.149-177. Zbl0668.34022MR929202
  4. [G] Guillemin V.: Band asymptotics in two dimensions, Advances in math.42, (1981) p. 248-282. Zbl0478.58029MR642393
  5. [H-S] Helffer B. et Sjöstrand J.: Semi-classical analysis for Harper equation III, Bulletin de la SMF mémoire n° 39 (1989). Zbl0725.34099
  6. [K-L-S] Kurchan P., Leboeuf P., Saraceno M.: Semi-classical approximation in the coherent state representation, Phys. Rev.A40 (12) (1989), p. 6800-6813. MR1031936
  7. [M] Marz C.: Spectral asymptotics for Hill's equation near the potential maximum, thèse Orsay (1990) et à paraître dans Asymptotic Analysis. Zbl0786.34080
  8. [S] Sjöstrand J.: Density of states for oscillating Schrödinger operators ; the de Haas-Van Halphen effect, à paraître dans Proceeding of Conference on PDE and Math. Physic Alabama (1990). 
  9. [U] Uribe A.: A symbol calculus for a class of pseudo-differential operators on Sn and band asymptotics, J.F.A.59 (1984) 535-556. Zbl0561.35082MR769380
  10. [W] Weinstein A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J.44 (4) (1977) p. 883-892. Zbl0385.58013MR482878

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.