Applications harmoniques de B 3 dans S 2 partout discontinues

Tristan Rivière

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-8

How to cite


Rivière, Tristan. "Applications harmoniques de $B^3$ dans $S^2$ partout discontinues." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-8. <>.

author = {Rivière, Tristan},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {regularity; weak solutions; 3-dimensional Euclidean ball; harmonic maps; Euclidean 2-sphere},
language = {fre},
pages = {1-8},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Applications harmoniques de $B^3$ dans $S^2$ partout discontinues},
url = {},
year = {1991-1992},

AU - Rivière, Tristan
TI - Applications harmoniques de $B^3$ dans $S^2$ partout discontinues
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 8
LA - fre
KW - regularity; weak solutions; 3-dimensional Euclidean ball; harmonic maps; Euclidean 2-sphere
UR -
ER -


  1. [1] F. Bethuel, H. Brezis and J-M. Coron, Relaxed energies for harmonic maps. in Variationel Problems (H. Berestycki, J-M. Coron, I. Ekeland, eds.), Birkhauser (1990). Zbl0793.58011MR1205144
  2. [2] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Analysis, 80 (1988), 60-75. Zbl0657.46027MR960223
  3. [3] H. Brezis, J-M. Coron and E. Lieb, Harmonic maps with defects. Comm. Math. Phys.107 (1986), 649-705. Zbl0608.58016MR868739
  4. [4] L.C. Evans, Partial regularity for stationary harmonic maps into the sphere. Arch. Rationa. Mech. Anal.116 (1991), 101-113. Zbl0754.58007MR1143435
  5. [5] M. Giaquinta, G. Modica and J. Soucek, The Dirichlet energy of mappings with values into the sphere. Manuscripta Math., 65 (1989), 489-507. Zbl0678.49006MR1019705
  6. [6] M. Grüter, Regularity of weak h-surfaces. J. Reine Angew. Math., 65 (1981), 1-15. Zbl0461.53029MR636440
  7. [7] R. Hardt, F.H. Lin and C. Poon, Axially symmetric harmonic maps minimizing a relaxed energy. à paraître, 1991. Zbl0769.58012
  8. [8] F. Hélein, Régiclarité des applications harmoniques entre une surface et une sphère. Note aux C.R.A.S., 311 (1990), 519-525. Zbl0728.35014MR1078114
  9. [9] S. Hildebrandt, H. Kaul and K.O. Widman, An existence theorem for harmonic mappings of Riemannian manifolds. Acta Mathematica138 (1977), 1-15. Zbl0356.53015MR433502
  10. [10] C.B. Morrey, Multiple integrals in the calculus of variations. springer- Verlag, New-York (1977). Zbl0142.38701
  11. [11] C.B. Morrey, The problem of plateau on a Riemannian manifold. Ann. of Math., 49 (1948), 807-851. Zbl0033.39601MR27137
  12. [12] T. Rivière, Harmonic maps from B3 into S2 having a line of singularities. Note aux C.R.A.S.101 (1991), 583-587. Zbl0760.49025MR1133489
  13. [13] T. Rivière, Construction d'un dipôle. à paraître, 1992. 
  14. [14] T. Rivière, Everywhere discontinuous harmonic maps from B3 into S2. to appear, 1992. Zbl0780.49030MR1163864
  15. [15] R. Schoen, Analytic aspect of the harmonic maps problem. Sci. Res. Inst. publ. (Springer, Berlin) 2 (1984), 321-358. Zbl0551.58011MR765241
  16. [16] R. Schoen and K. Uhlenbeck, A reyularity theory for harmonic maps. J. of Diff. Geom.17 (1982), 307-335. Zbl0521.58021MR664498

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.