Radiation conditions and scattering theory for N -particle quantum systems

D. Yafaev

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-14

How to cite

top

Yafaev, D.. "Radiation conditions and scattering theory for $N$-particle quantum systems." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-14. <http://eudml.org/doc/112037>.

@article{Yafaev1991-1992,
author = {Yafaev, D.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {asymptotic completeness; smooth perturbations},
language = {eng},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Radiation conditions and scattering theory for $N$-particle quantum systems},
url = {http://eudml.org/doc/112037},
year = {1991-1992},
}

TY - JOUR
AU - Yafaev, D.
TI - Radiation conditions and scattering theory for $N$-particle quantum systems
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - eng
KW - asymptotic completeness; smooth perturbations
UR - http://eudml.org/doc/112037
ER -

References

top
  1. [1] L.D. Faddeev, Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory, Trudy MIAN69, 1963. (Russian) Zbl0131.43504MR163695
  2. [2] J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three body problem, Ann. Inst. H.Poincaré, A21(1974), 97-145. Zbl0311.47003MR368656
  3. [3] L.E. Thomas, Asymptotic completeness in two- and three-particle quantum mechanical scattering, Ann. Phys.90 (1975), 127-165. MR424082
  4. [4] K. Hepp, On the quantum-mechanical N-body problem, Helv. Phys. Acta42(1969), 425-458. MR247840
  5. [5] I.M. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems, SpringerLecture Notes in Math. 1011, 1983. Zbl0522.47006MR715786
  6. [6] R.J. Iorio and M. O'Carrol, Asymptotic completeness for multi-particle Schrödinger Hamiltonians with weak potentials, Comm. Math. Phys.27(1972), 137-145. MR314392
  7. [7] T. Kato, Smooth operators and commutators, Studia Math.31(1968), 535-546. Zbl0215.48802MR234314
  8. [8] R. Lavine, Commutators and scattering theory I: Repulsive interactions, Comm. Math. Phys.20(1971), 301-323. Zbl0207.13706MR293945
  9. [9] R. Lavine, Completeness of the wave operators in the repulsive N-body problem, J. Math. Phys.14 (1973), 376-379. Zbl0269.47005MR317689
  10. [10] I.M. Sigal and A. Soffer, The N-particle scattering problem: Asymptotic completeness for short-range systems, Ann. Math.126(1987), 35-108. Zbl0646.47009MR898052
  11. [11] G.M. Graf, Asymptotic completeness for N-body short-range quantum systems: A new proof, Comm. Math. Phys.132 (1990), 73-101. Zbl0726.35096MR1069201
  12. [12] V. Enss, Completeness of three-body quantum scattering, in: Dynamics and processes, P. Blanchard and L. Streit, eds., Springer Lecture Notes in Math.103 (1983), 62-88. Zbl0531.47009MR733643
  13. [13] T. Kato, Wave operators and similarity for some non-self-adjoint operators, Math. Ann.162 (1966), 258-279. Zbl0139.31203MR190801
  14. [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Academic Press, 1979. Zbl0405.47007MR529429
  15. [15] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations, Math. Notes, Princeton Univ. Press, 1982. Zbl0503.35001MR745286
  16. [16] E. Mourre, Absence of singular spectrum for certain self-adjoint operators, Comm. Math. Phys.78 (1981), 391-400. Zbl0489.47010MR603501
  17. [17] P. Perry, I.M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators, Ann. Math.144 (1981), 519-567. Zbl0477.35069MR634428
  18. [18] R. Froese, I. Herbst, A new proof of the Mourre estimate, Duke Math. J.49 (1982), 1075-1085. Zbl0514.35025MR683011
  19. [19] D.R. Yafaev, Remarks on spectral theory for the Schrödinger operator of multiparticle type, Notes of Sci. Seminars of LOMI133 (1984), 277-298. (Russian) Zbl0552.35020MR742163
  20. [20] Y. Saito, Spectral Representation for Schrödinger Operators with Long-Range Potentials, SpringerLecture Notes in Math. 727, 1979. Zbl0414.47012MR540891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.