Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux

S. Alinhac

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-12

How to cite

top

Alinhac, S.. "Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-12. <http://eudml.org/doc/112066>.

@article{Alinhac1992-1993,
author = {Alinhac, S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {singularity formation; blow-up mechanism; small data; unfolded system; Burgers' equation},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux},
url = {http://eudml.org/doc/112066},
year = {1992-1993},
}

TY - JOUR
AU - Alinhac, S.
TI - Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
KW - singularity formation; blow-up mechanism; small data; unfolded system; Burgers' equation
UR - http://eudml.org/doc/112066
ER -

References

top
  1. [1] Alinhac S.Une solution approchée en grands temps des équations d'Euler compressibles axisymétriques en dimension deux, Comm. in PDE, 17 (3 et 4), (1992), 447-490. Zbl0755.35089MR1163433
  2. [2] Alinhac S.Approximation près du temps d'explosion des solutions d'équations d'ondes quasi-linéaires en dimension deux Preprint, Paris-Sud/ Orsay (1992). Zbl0870.35063MR1163433
  3. [3] Alinhac S.Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux I et II, Preprint, Paris-Sud/ Orsay (1992 et 1993). 
  4. [4] Di Perna R. et Majda A.The validity of geometrical optics for weak solutions of conservation lawsComm. Math. Phys.98 (1985), 313-347. Zbl0582.35081MR788777
  5. [5] Friedlander G.On the radiation field of pulse solutions of the wave équation I, II, Proc. Roy. Soc. A, 269 (1962), 53-65 et 279 (1964), 386-394. Zbl0117.43904MR142888
  6. [6] Hörmander L.The lifespan of classical solutions of non linear hyperbolic equations, Mittag Leffler report n° 5 (1985). Zbl0632.35045
  7. [7] Hörmander L.Non linear hyperbolic differential equations, Lectures, (1986-87). 
  8. [8] John F.Non linear wave equations, formation of singularitiesPitcher lectures in the Math. Sciences AMS (1990). Zbl0716.35043MR1066694
  9. [9] John F.Solutions of quasilinear wave equations with small initial data ; the third phase, non linear hyperbolic equations Proceedings, Bordeaux (1988), Lecture notes in mathematics 1402, Springer Verlag, 155-184. Zbl0694.35012MR1033282
  10. [10] John F.Blow up of radial solutions of utt = c2(ut)Δ u in three space dimensionsMath. Aplicada e Comp.4 (1985), 3-18. Zbl0597.35082
  11. [11] John F.Existence for large times of strict solutions of non linear wave equations in three space dimensions for small initial data, Comm. in PureAppl. Math.40, (1987), 79-109. Zbl0662.35070MR865358
  12. [12] John F. et Klainerman S.Almost global existence to non linear wave equations in three space dimensionsComm. Pure Appl. Math.37 (1984) 443-55. Zbl0599.35104MR745325
  13. [13] Klainerman S.Weighted L∞ and L1 estimates for solutions to the classical wave equation in three space dimensionsComm. Pure Appl. Math37 (1984) 269-88. Zbl0583.35068
  14. [14] Klainerman S.Uniform decay estimates and the Lorentz invariance of the classical wave equationComm. Pure Appl. Math.38 (1985) 321-332. Zbl0635.35059MR784477
  15. [15] Majda A.Compressible fluid flows and systems of conservation laws SpringerAppl. Math. Sc.53 (1984). Zbl0537.76001
  16. [16] Majda A. et Rosales R.Resonantly interacting weakly non linear hyperbolic waves I. A single space variable, Stud. Appl. Math.71 (1984) 149-179. Zbl0572.76066MR760229
  17. [17] Wasow W.Asymptotic expansions for ordinary differential equationsKrieger, New York (1976). Zbl0644.34003MR460820

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.