Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique

G. D. Raikov

Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)

  • page 1-11

How to cite

top

Raikov, G. D.. "Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-11. <http://eudml.org/doc/112084>.

@article{Raikov1993-1994,
author = {Raikov, G. D.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {perturbed Schrödinger operator},
language = {fre},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique},
url = {http://eudml.org/doc/112084},
year = {1993-1994},
}

TY - JOUR
AU - Raikov, G. D.
TI - Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - fre
KW - perturbed Schrödinger operator
UR - http://eudml.org/doc/112084
ER -

References

top
  1. [AlDeHem] S. Alama, P.A. Deift, R. Hempel, Eigenvalue branches of the Schrödinger operator H - λW in a gap of σ(H), Commun.Math.Phys.121 (1989) 291-321. Zbl0676.47032
  2. [AvHerSim] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math.J.45 (1978) 847-883. Zbl0399.35029MR518109
  3. [Bir 1] M.Š. Birman, Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant, A: Estimates and asymptotics for discrete spectra of integral and differential equations. Adv.Sov.Math.7 (1991), 57-74, AMS, Providence, RI. Zbl0754.35025MR1306508
  4. [Bir 2] M.Š. Birman, On the discrete spectrum in the gaps for a perturbed periodic second-order operator, Funct.Anal.Appl.25, no.4 (1991) 158-161. Zbl0733.35083MR1142222
  5. [BirRai] M.Š. Birman, G.D. Raikov, Discrete spectrum in the gaps for perturbations of the magnetic Schrödinger operator, A: Estimates and asymptotics for discrete spectra of integral and differential equations, Adv.Sov.Math.7 (1991), 75-84, AMS, Providence, RI. Zbl0753.35021MR1306509
  6. [BoyLev] S.I. Boyarchenko, S.Z. Levendorskii, Precise spectral asymptotics for perturbed magnetic Schrödinger operator, Prépublication, 1994. Zbl0872.35073
  7. [CdV] Y. ColinDE VERDIÈRE, L'asymptotique de Weyl pour les bouteilles magnétiques, Commun.Math.Phys.105 (1986) 327-335. Zbl0612.35102MR849211
  8. [DauRob] M. Dauge, D. Robert, Weyl's formula for a class of pseudodifferential operators with negative order on L2(Rn), A: Proceedings of the Conference on Pseudodifferential Operators, Oberwolfach1986, Lect.Notes Math. 1256 (1987), 91-122, Springer, Berlin-Heidelberg -New York. Zbl0629.35098MR897775
  9. [DeHem] P.A. Deift, R. Hempel, On the existence of eigenvalues of the Schrödinger operator H - λW in a gap of σ(H), Commun.Math.Phys.103 (1986) 461-490. Zbl0594.34022
  10. [Hem] R. Hempel, On the asymptotic distribution of the eigenvalue branches of the Schrôdinger operator H ± λW in a spectral gap of H, J.Reine Angew.Math.399 (1989) 38-59. Zbl0681.35066
  11. [Lev 1] S.Z. Levendorskii, Asymptotic formulae with remainder estimates for eigenvalue branches of the Schrôdinger operator H - λW in a gap of H, Prépublication, 1993. Zbl0911.35081
  12. [Lev 2] S.Z. Levendorskii, Two-term asymptotics for Schrödinger operators with perturbed periodic and uniform magnetic potentials, Prépublication, 1994. 
  13. [Rai 1] G.D. Raikov, Strong electric field eigenvalue asymptotics for the Schrôdinger operator with electromagnetic potential, Lett.Math.Phys.21 (1991) 41-49. Zbl0727.35102MR1088409
  14. [Rai 2] G.D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential, Inventiones math.110 (1992) 75-93. Zbl0801.35095MR1181817
  15. [Rai 3] G.D. Raikov, Strong-electric-field eigenvalue asymptotics for the perturbed magnetic Schrödinger operator, Commun.Math.Phys.155 (1993) 415-428. Zbl0782.35049MR1230034
  16. [Re Sim 1] M. Reed, B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis. Selfadjointness, Academic Press, New York, 1978. Zbl0308.47002MR751959
  17. [Re Sim 2] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  18. [Shu] M.A. Šubin, Spectral theory and the index of elliptic operators with almost periodic coefficients, Soviet Math.Surveys34 (1979) 95-135. Zbl0448.47032MR535710
  19. [Sob] A.V. Sobolev, Weyl asymptotics for the discrete spectrum of the perturbed Hill operator, A: Estimates and asymptotics for discrete spectra of integral and differential equations. Adv.Sov.Math7 (1991), 159-178, AMS, Providence, RI. Zbl0752.34046MR1306512

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.