Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique
Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)
- page 1-11
Access Full Article
topHow to cite
topRaikov, G. D.. "Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-11. <http://eudml.org/doc/112084>.
@article{Raikov1993-1994,
author = {Raikov, G. D.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {perturbed Schrödinger operator},
language = {fre},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique},
url = {http://eudml.org/doc/112084},
year = {1993-1994},
}
TY - JOUR
AU - Raikov, G. D.
TI - Asymptotiques spectrales pour l'opérateur de Schrödinger avec un potentiel électromagnétique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - fre
KW - perturbed Schrödinger operator
UR - http://eudml.org/doc/112084
ER -
References
top- [AlDeHem] S. Alama, P.A. Deift, R. Hempel, Eigenvalue branches of the Schrödinger operator H - λW in a gap of σ(H), Commun.Math.Phys.121 (1989) 291-321. Zbl0676.47032
- [AvHerSim] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math.J.45 (1978) 847-883. Zbl0399.35029MR518109
- [Bir 1] M.Š. Birman, Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant, A: Estimates and asymptotics for discrete spectra of integral and differential equations. Adv.Sov.Math.7 (1991), 57-74, AMS, Providence, RI. Zbl0754.35025MR1306508
- [Bir 2] M.Š. Birman, On the discrete spectrum in the gaps for a perturbed periodic second-order operator, Funct.Anal.Appl.25, no.4 (1991) 158-161. Zbl0733.35083MR1142222
- [BirRai] M.Š. Birman, G.D. Raikov, Discrete spectrum in the gaps for perturbations of the magnetic Schrödinger operator, A: Estimates and asymptotics for discrete spectra of integral and differential equations, Adv.Sov.Math.7 (1991), 75-84, AMS, Providence, RI. Zbl0753.35021MR1306509
- [BoyLev] S.I. Boyarchenko, S.Z. Levendorskii, Precise spectral asymptotics for perturbed magnetic Schrödinger operator, Prépublication, 1994. Zbl0872.35073
- [CdV] Y. ColinDE VERDIÈRE, L'asymptotique de Weyl pour les bouteilles magnétiques, Commun.Math.Phys.105 (1986) 327-335. Zbl0612.35102MR849211
- [DauRob] M. Dauge, D. Robert, Weyl's formula for a class of pseudodifferential operators with negative order on L2(Rn), A: Proceedings of the Conference on Pseudodifferential Operators, Oberwolfach1986, Lect.Notes Math. 1256 (1987), 91-122, Springer, Berlin-Heidelberg -New York. Zbl0629.35098MR897775
- [DeHem] P.A. Deift, R. Hempel, On the existence of eigenvalues of the Schrödinger operator H - λW in a gap of σ(H), Commun.Math.Phys.103 (1986) 461-490. Zbl0594.34022
- [Hem] R. Hempel, On the asymptotic distribution of the eigenvalue branches of the Schrôdinger operator H ± λW in a spectral gap of H, J.Reine Angew.Math.399 (1989) 38-59. Zbl0681.35066
- [Lev 1] S.Z. Levendorskii, Asymptotic formulae with remainder estimates for eigenvalue branches of the Schrôdinger operator H - λW in a gap of H, Prépublication, 1993. Zbl0911.35081
- [Lev 2] S.Z. Levendorskii, Two-term asymptotics for Schrödinger operators with perturbed periodic and uniform magnetic potentials, Prépublication, 1994.
- [Rai 1] G.D. Raikov, Strong electric field eigenvalue asymptotics for the Schrôdinger operator with electromagnetic potential, Lett.Math.Phys.21 (1991) 41-49. Zbl0727.35102MR1088409
- [Rai 2] G.D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential, Inventiones math.110 (1992) 75-93. Zbl0801.35095MR1181817
- [Rai 3] G.D. Raikov, Strong-electric-field eigenvalue asymptotics for the perturbed magnetic Schrödinger operator, Commun.Math.Phys.155 (1993) 415-428. Zbl0782.35049MR1230034
- [Re Sim 1] M. Reed, B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis. Selfadjointness, Academic Press, New York, 1978. Zbl0308.47002MR751959
- [Re Sim 2] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
- [Shu] M.A. Šubin, Spectral theory and the index of elliptic operators with almost periodic coefficients, Soviet Math.Surveys34 (1979) 95-135. Zbl0448.47032MR535710
- [Sob] A.V. Sobolev, Weyl asymptotics for the discrete spectrum of the perturbed Hill operator, A: Estimates and asymptotics for discrete spectra of integral and differential equations. Adv.Sov.Math7 (1991), 159-178, AMS, Providence, RI. Zbl0752.34046MR1306512
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.