Le rôle de la frontière dans un problème elliptique avec non-linéarité critique et conditions au bord de Neumann

O. Rey

Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)

  • page 1-11

How to cite

top

Rey, O.. "Le rôle de la frontière dans un problème elliptique avec non-linéarité critique et conditions au bord de Neumann." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-11. <http://eudml.org/doc/112088>.

@article{Rey1993-1994,
author = {Rey, O.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {boundary; critical exponent; critical points; multiplicity results},
language = {fre},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le rôle de la frontière dans un problème elliptique avec non-linéarité critique et conditions au bord de Neumann},
url = {http://eudml.org/doc/112088},
year = {1993-1994},
}

TY - JOUR
AU - Rey, O.
TI - Le rôle de la frontière dans un problème elliptique avec non-linéarité critique et conditions au bord de Neumann
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - fre
KW - boundary; critical exponent; critical points; multiplicity results
UR - http://eudml.org/doc/112088
ER -

References

top
  1. [1] Adimurthi, G. Mancini - The Neumann problem for elliptic equations with critical nonlinearity, "A tribute in honour of G. Prodi"Scuola Norm. Sup. Pisa (1991), 9-25. Zbl0836.35048MR1205370
  2. [2] Adimurthi, S.L.Yadava - Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents, Arch. Rat. Mech. Anal.115 (1991), 275-296. Zbl0839.35041MR1106295
  3. [3] Adimurthi, G. Mancini, S.L. Yadava - The role of the mean curvature in semilinear Neumann problem involving critical exponent, à paraître. Zbl0847.35047
  4. [4] Adimurthi, F. Pacella, S.L.Yadava - Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal.113 (1993), 318-350. Zbl0793.35033MR1218099
  5. [5] Adimurthi, F. Pacella, S.L. Yadava - Characterization of concentration points and L∞-estimates for solutions of semilinear Neumann problem involving the critical Sobolev exponent, à paraître. Zbl0814.35029
  6. [6] A. Bahri - Critical points at infinity in some variational problemsPitman Research Notes in Math. Series 182, Longman (1989). Zbl0676.58021MR1019828
  7. [7] A. Bahri, J.M. Coron - On a nonlinear elliptic equation involving the critical Sobolev exponent: the effet of the topology of the domain, Comm. Pure Appl. Math.41 (1988), 255-294. Zbl0649.35033MR929280
  8. [8] A. Bahri, Y. Li, O. Rey - On a variational problem with lack of compactness: the topological effet of the critical points at infinity, à paraître dans Calculus of Variations and PDE's. Zbl0814.35032
  9. [9] H. Brezis, L. Nirenberg - Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math.XXXVI (1993). 437-477. Zbl0541.35029MR709644
  10. [10] C. Budd, M.C. Knaap, L.A. Peletier - Asymptotic behaviour of solutions of elliptic equations with critical exponent and Neumann boundary conditions. Proc. Roy. Soc. Edinburgh117A (1991), 225-250. Zbl0733.35038MR1103293
  11. [11] B. Gidas, J. Spruck - A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Equ.6 (1981), 883-901. Zbl0462.35041MR619749
  12. [12] E.F. Keller, L.A. Segel - Initiation of slime mold aggregation viewed as an in-stability, J. Theoret. Biol.26 (1970), 399-415. Zbl1170.92306
  13. [13] C.S. Lin, W.M. Ni - On the Diffusion Coefficient of a Semilinear Neumann Problem, Springer Lecture Notes 1340, Springer, New-York, Berlin. (1986). Zbl0704.35050MR974610
  14. [14] C.S. Lin, W.M. Ni, I. Takagi - Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1988), 1-27. Zbl0676.35030MR929196
  15. [15] P.L. Lions - The concentration compactness principle in the calculus of variations, the limit case, Rev. Mat. Iberoamericana1.1 (1985), 145-201 et 1.2 (1985),45-121. Zbl0704.49005MR850686
  16. [16] H. Meinhardt - Models of Biological Pattern Formation, Academic Press, London, New-York (1982). 
  17. [17] O. Rey - The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990), 1-52. Zbl0786.35059MR1040954
  18. [18] O. Rey - Boundary concentration in an elliptic Neumann problem with critical nonlinearity, à paraître. 
  19. [19] X.J. Wang - Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equ.93 (1991). 283-310. Zbl0766.35017MR1125221

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.