Constant curvature ( 2 + 1 ) -spacetimes and projective structures

Francesco Bonsante

Séminaire de théorie spectrale et géométrie (2004-2005)

  • Volume: 23, page 9-48
  • ISSN: 1624-5458

Abstract

top
Nous illustrons une classification des espace-temps (2+1) globalement hyperboliques a courboure constant, en terms de certaines structures projectives complexes portées par les surfaces de niveau de leur temps cosmologique canonique. Ceci derive d’une theorie des rotations de Wick canoniques, developpée en collaboration avec Riccardo Benedetti [6], qui sera egalement brievement illustrée.

How to cite

top

Bonsante, Francesco. "Constant curvature $(2+1)$-spacetimes and projective structures." Séminaire de théorie spectrale et géométrie 23 (2004-2005): 9-48. <http://eudml.org/doc/11211>.

@article{Bonsante2004-2005,
abstract = {Nous illustrons une classification des espace-temps (2+1) globalement hyperboliques a courboure constant, en terms de certaines structures projectives complexes portées par les surfaces de niveau de leur temps cosmologique canonique. Ceci derive d’une theorie des rotations de Wick canoniques, developpée en collaboration avec Riccardo Benedetti [6], qui sera egalement brievement illustrée.},
author = {Bonsante, Francesco},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {space time; Wick rotation; classification of space time},
language = {eng},
pages = {9-48},
publisher = {Institut Fourier},
title = {Constant curvature $(2+1)$-spacetimes and projective structures},
url = {http://eudml.org/doc/11211},
volume = {23},
year = {2004-2005},
}

TY - JOUR
AU - Bonsante, Francesco
TI - Constant curvature $(2+1)$-spacetimes and projective structures
JO - Séminaire de théorie spectrale et géométrie
PY - 2004-2005
PB - Institut Fourier
VL - 23
SP - 9
EP - 48
AB - Nous illustrons une classification des espace-temps (2+1) globalement hyperboliques a courboure constant, en terms de certaines structures projectives complexes portées par les surfaces de niveau de leur temps cosmologique canonique. Ceci derive d’une theorie des rotations de Wick canoniques, developpée en collaboration avec Riccardo Benedetti [6], qui sera egalement brievement illustrée.
LA - eng
KW - space time; Wick rotation; classification of space time
UR - http://eudml.org/doc/11211
ER -

References

top
  1. L. Andersson, G. Galloway, R. Howard. The Cosmological Time Function, Classical Quantum Gravity, 15 (1998), 309–322. Zbl0911.53039MR1606594
  2. L. Andersson. Constant Mean Curvature Foliations of Flat Space-times, Comm. Anal. Geom., 10 (2002), 1125–1150. Zbl1038.53025MR1957665
  3. B. N. Apanasov. The geometry of Nielsen’s hull for a Kleinian group in space and quasi-conformal mappings, Ann. Global Anal. Geom. 6 (1988), 207–230. Zbl0662.53039
  4. T. Barbot. Globally hyperbolic flat spacetimes, J. Geom. Phys. 53 (2005), 123–165. Zbl1087.53065MR2110829
  5. J. Beem, P. Ehrlich. Global Lorentzian Geometry. 2nd edition, Monographs and Textbooks in Pure and Applied Mathematics, 202 Marcel Dekker, Inc., New York 1996. Zbl0462.53001MR1384756
  6. R. Benedetti, F. Bonsante. Wick rotation and rescaling in 3 D -gravity In preparation. Zbl1165.53047
  7. R. Benedetti, E. Guadagnini. Cosmological time in ( 2 + 1 ) -gravity,  Nuclear Phys. B 613 (2001), 330–352. Zbl0970.83039MR1857817
  8. R. Benedetti, C. Petronio. Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, Berlin-Heidelberg-New York 1992. Zbl0768.51018MR1219310
  9. F. Bonsante Deforming the Minkowskian cone of a closed hyperbolic manifold, Ph.D. Thesis, Pisa, 2005. 
  10. F. Bonsante Flat spacetimes with compact hyperbolic Cauchy surfaces To appear. Zbl1094.53063MR2170277
  11. F. Bonsante Flat regular domains In preparation. 
  12. Y. Choquet-Bruhat, R. Geroch. Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14(1969), 329–335. Zbl0182.59901MR250640
  13. D. B. A. Epstein(ed.). Analytical and Geometric Aspects of Hyperbolic Space. (Papers of two symposia), Warwick and Durham (England) 1984, London Mathemathical Society Lecture Note Series 111, Cambridge University Press, Cambridge 1987. Zbl0601.00008MR903849
  14. R. Geroch. Domain of Dependence, J. Mathematical. Phys. 11 (1970), 437–449. Zbl0189.27602MR270697
  15. S. W. Hawking, F. R. Ellis. The Large Scale Structures of Space-time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, London-New York 1973. Zbl0265.53054MR424186
  16. R. Kulkarni, U. Pinkall. A canonical metric for Moebius structures and its applications, Math. Z. 216, 89–119. Zbl0813.53022MR1273468
  17. G. Mess. Lorentz Spacetime of Constant Curvature, Preprint (1990). Zbl0709.57025MR2328921
  18. K. Scannell. Flat conformal structures and the classification of De Sitter manifolds Comm. Anal. Geom., 7 (1999), 325–345. Zbl0941.53040MR1685590

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.