Page 1

Displaying 1 – 6 of 6

Showing per page

A gravitational effective action on a finite triangulation as a discrete model of continuous concepts

Albert Ko, Martin Roček (2006)

Archivum Mathematicum

We recall how the Gauss-Bonnet theorem can be interpreted as a finite dimensional index theorem. We describe the construction given in hep-th/0512293 of a function that can be interpreted as a gravitational effective action on a triangulation. The variation of this function under local rescalings of the edge lengths sharing a vertex is the Euler density, and we use it to illustrate how continuous concepts can have natural discrete analogs.

Constant curvature ( 2 + 1 ) -spacetimes and projective structures

Francesco Bonsante (2004/2005)

Séminaire de théorie spectrale et géométrie

Nous illustrons une classification des espace-temps (2+1) globalement hyperboliques a courboure constant, en terms de certaines structures projectives complexes portées par les surfaces de niveau de leur temps cosmologique canonique. Ceci derive d’une theorie des rotations de Wick canoniques, developpée en collaboration avec Riccardo Benedetti [6], qui sera egalement brievement illustrée.

Homogeneous systems of higher-order ordinary differential equations

Mike Crampin (2010)

Communications in Mathematics

The concept of homogeneity, which picks out sprays from the general run of systems of second-order ordinary differential equations in the geometrical theory of such equations, is generalized so as to apply to equations of higher order. Certain properties of the geometric concomitants of a spray are shown to continue to hold for higher-order systems. Third-order equations play a special role, because a strong form of homogeneity may apply to them. The key example of a single third-order equation...

Currently displaying 1 – 6 of 6

Page 1