Sur l'équation des ondes non linéaires avec exposant critique

P. Gérard

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-12

How to cite

top

Gérard, P.. "Sur l'équation des ondes non linéaires avec exposant critique." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-12. <http://eudml.org/doc/112129>.

@article{Gérard1995-1996,
author = {Gérard, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Sur l'équation des ondes non linéaires avec exposant critique},
url = {http://eudml.org/doc/112129},
year = {1995-1996},
}

TY - JOUR
AU - Gérard, P.
TI - Sur l'équation des ondes non linéaires avec exposant critique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
UR - http://eudml.org/doc/112129
ER -

References

top
  1. [BS] H. Bahouri, J. Shatah: Global estimate for the critical semilinear wave equation, en préparation. 
  2. [G1] P. Gérard: Oscillations and concentration effects in semilinear dispersive wave equations, à paraître à J. Funct. Analysis. Zbl0868.35075MR1414374
  3. [G2] P. Gérard: A microlocal version of concentration-compactness, in Partial Differential Equations and Mathematical Physics, 143-157, L. Hörmander and A. Melin editors, Birkhäuser, 1996. Zbl0868.35005MR1380988
  4. [GV1] J. Ginibre, G. Velo: The Global Cauchy Problem for the Non Linear Klein-Gordon Equation, Math. Z.189 (1985), 487-505. Zbl0549.35108MR786279
  5. [GV2] J. Ginibre, G. Velo: Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Analysis, 133 (1995), 50-68. Zbl0849.35064MR1351643
  6. [GV3] J. Ginibre, G. Velo: Scattering theory in the energy space for a class of non linear wave equations, Commun. Math. Phys.123 (1989), 535-573. Zbl0698.35112MR1006294
  7. [GSV] J. Ginibre, H. Soffer, G. Velo: The Global Cauchy Problem for the Critical Non Linear Wave Equation, J. Funct. Anal.110 (1992), 96-130. Zbl0813.35054MR1190421
  8. [Gr] M. Grillakis: Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509. Zbl0736.35067MR1078267
  9. [M] C. Morawetz: Time decay for the nonlinear Klein-Gordon equation, Proc. Royal Soc. LondonA306 (1968), 291-296. Zbl0157.41502MR234136
  10. [MS] C. Morawetz, W. Strauss: Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31. Zbl0228.35055MR303097
  11. [P] H. Pecher: Nonlinear small data scattering for the wave and Klein-Gordon Equations, Math. Z.185 (1984), 261-270. Zbl0538.35063MR731347
  12. [S] M. Struwe: Globally Regular Solutions to the u5 Klein Gordon Equation, Annali Scuola Norm. Pisa, 15 (1988), 495-513. Zbl0728.35072MR1015805
  13. [SS1] J. Shatah, M. Struwe: Regularity Results for Nonlinear Wave Equations, Ann. Math., 138 (1993), 503-518. Zbl0836.35096MR1247991
  14. [SS2] J. Shatah, M. Struwe: Well-Posedness in the Energy Space for Semilinear Wave Equations with Critical Growth, IMRN7 (1994), 303-309. Zbl0830.35086MR1283026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.