The Global Cauchy Problem for the Non Linear Klein-Gordon Equation.
Mathematische Zeitschrift (1985)
- Volume: 189, page 487-506
- ISSN: 0025-5874; 1432-1823
Access Full Article
topHow to cite
topGinibre, J., and Velo, G.. "The Global Cauchy Problem for the Non Linear Klein-Gordon Equation.." Mathematische Zeitschrift 189 (1985): 487-506. <http://eudml.org/doc/173596>.
@article{Ginibre1985,
author = {Ginibre, J., Velo, G.},
journal = {Mathematische Zeitschrift},
keywords = {nonlinear Klein-Gordon equation; existence; uniqueness; Cauchy problem; homogeneous Sobolev spaces; contraction method},
pages = {487-506},
title = {The Global Cauchy Problem for the Non Linear Klein-Gordon Equation.},
url = {http://eudml.org/doc/173596},
volume = {189},
year = {1985},
}
TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - The Global Cauchy Problem for the Non Linear Klein-Gordon Equation.
JO - Mathematische Zeitschrift
PY - 1985
VL - 189
SP - 487
EP - 506
KW - nonlinear Klein-Gordon equation; existence; uniqueness; Cauchy problem; homogeneous Sobolev spaces; contraction method
UR - http://eudml.org/doc/173596
ER -
Citations in EuDML Documents
top- Amel Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space
- P. Gérard, Sur l'équation des ondes non linéaires avec exposant critique
- Yue Liu, Masahito Ohta, Grozdena Todorova, Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations
- Gilles Lebeau, Perte de régularité pour les équations d’ondes sur-critiques
- J. Ginibre, T. Ozawa, G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations
- Belhassen Dehman, Gilles Lebeau, Enrique Zuazua, Stabilization and control for the subcritical semilinear wave equation
- P. Brenner, On strong globbal solutions of nonlinear hyperbolic equations
- P. Gérard, Injections de Sobolev critiques, mesures microlocales et ondes non linéaires
- Jalal Shatah, Regularity results for semilinear and geometric wave equations
- Slim Ibrahim, Mohamed Majdoub, Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.